NEURAL NETWORK HAVING EFFICIENT CHANNEL ATTENTION (ECA) MECHANISM

The present disclosure relates to a neural network having an ECA channel attention mechanism. The neural network comprises an ECA channel attention device. The ECA channel attention device comprises: a first hierarchical quantization unit used for performing hierarchical quantization on input data a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: ZHAO, Xiongbo, WU, Songling, LI, Xiaomin, JIN, Ruixi, ZHANG, Hui, WANG, Xiaofeng, ZHOU, Hui, YANG, Junyu, XIE, Yujia, LI, Yue, LIN, Ping, LU, Kunfeng, ZHANG, Juan, CONG, Longjian, GAI, Yifan, WEI, Xiaodan, LIN, Yuye
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator ZHAO, Xiongbo
WU, Songling
LI, Xiaomin
JIN, Ruixi
ZHANG, Hui
WANG, Xiaofeng
ZHOU, Hui
YANG, Junyu
XIE, Yujia
LI, Yue
LIN, Ping
LU, Kunfeng
ZHANG, Juan
CONG, Longjian
GAI, Yifan
WEI, Xiaodan
LIN, Yuye
description The present disclosure relates to a neural network having an ECA channel attention mechanism. The neural network comprises an ECA channel attention device. The ECA channel attention device comprises: a first hierarchical quantization unit used for performing hierarchical quantization on input data and converting floating-point number input data into fixed-point number input data, wherein in the first hierarchical quantization module, the whole input tensor shares a quantization step size and a quantization zero point; a channel-level quantization unit used for performing hierarchical quantization on output of an activation layer, wherein the channel-level quantization module separately calculates a quantization step size and a quantization zero point for each channel; and a channel multiplication weighting module used for performing channel weighting multiplication calculation on first hierarchical quantization output data and channel-level quantization output data. According to the present disclosure, lossle
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2024113945A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2024113945A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2024113945A13</originalsourceid><addsrcrecordid>eNrjZHD0cw0NcvRR8HMNCfcP8lbwcAzz9HNXcHVz83T2dPULUXD2cPTzc_VRcAwJAXI9_f0UNFydHTUVfF1BMp7BvjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD7c38jAyMTQ0NjSxNTR0Jg4VQBmKCuP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEURAL NETWORK HAVING EFFICIENT CHANNEL ATTENTION (ECA) MECHANISM</title><source>esp@cenet</source><creator>ZHAO, Xiongbo ; WU, Songling ; LI, Xiaomin ; JIN, Ruixi ; ZHANG, Hui ; WANG, Xiaofeng ; ZHOU, Hui ; YANG, Junyu ; XIE, Yujia ; LI, Yue ; LIN, Ping ; LU, Kunfeng ; ZHANG, Juan ; CONG, Longjian ; GAI, Yifan ; WEI, Xiaodan ; LIN, Yuye</creator><creatorcontrib>ZHAO, Xiongbo ; WU, Songling ; LI, Xiaomin ; JIN, Ruixi ; ZHANG, Hui ; WANG, Xiaofeng ; ZHOU, Hui ; YANG, Junyu ; XIE, Yujia ; LI, Yue ; LIN, Ping ; LU, Kunfeng ; ZHANG, Juan ; CONG, Longjian ; GAI, Yifan ; WEI, Xiaodan ; LIN, Yuye</creatorcontrib><description>The present disclosure relates to a neural network having an ECA channel attention mechanism. The neural network comprises an ECA channel attention device. The ECA channel attention device comprises: a first hierarchical quantization unit used for performing hierarchical quantization on input data and converting floating-point number input data into fixed-point number input data, wherein in the first hierarchical quantization module, the whole input tensor shares a quantization step size and a quantization zero point; a channel-level quantization unit used for performing hierarchical quantization on output of an activation layer, wherein the channel-level quantization module separately calculates a quantization step size and a quantization zero point for each channel; and a channel multiplication weighting module used for performing channel weighting multiplication calculation on first hierarchical quantization output data and channel-level quantization output data. According to the present disclosure, lossle</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240606&amp;DB=EPODOC&amp;CC=WO&amp;NR=2024113945A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240606&amp;DB=EPODOC&amp;CC=WO&amp;NR=2024113945A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>ZHAO, Xiongbo</creatorcontrib><creatorcontrib>WU, Songling</creatorcontrib><creatorcontrib>LI, Xiaomin</creatorcontrib><creatorcontrib>JIN, Ruixi</creatorcontrib><creatorcontrib>ZHANG, Hui</creatorcontrib><creatorcontrib>WANG, Xiaofeng</creatorcontrib><creatorcontrib>ZHOU, Hui</creatorcontrib><creatorcontrib>YANG, Junyu</creatorcontrib><creatorcontrib>XIE, Yujia</creatorcontrib><creatorcontrib>LI, Yue</creatorcontrib><creatorcontrib>LIN, Ping</creatorcontrib><creatorcontrib>LU, Kunfeng</creatorcontrib><creatorcontrib>ZHANG, Juan</creatorcontrib><creatorcontrib>CONG, Longjian</creatorcontrib><creatorcontrib>GAI, Yifan</creatorcontrib><creatorcontrib>WEI, Xiaodan</creatorcontrib><creatorcontrib>LIN, Yuye</creatorcontrib><title>NEURAL NETWORK HAVING EFFICIENT CHANNEL ATTENTION (ECA) MECHANISM</title><description>The present disclosure relates to a neural network having an ECA channel attention mechanism. The neural network comprises an ECA channel attention device. The ECA channel attention device comprises: a first hierarchical quantization unit used for performing hierarchical quantization on input data and converting floating-point number input data into fixed-point number input data, wherein in the first hierarchical quantization module, the whole input tensor shares a quantization step size and a quantization zero point; a channel-level quantization unit used for performing hierarchical quantization on output of an activation layer, wherein the channel-level quantization module separately calculates a quantization step size and a quantization zero point for each channel; and a channel multiplication weighting module used for performing channel weighting multiplication calculation on first hierarchical quantization output data and channel-level quantization output data. According to the present disclosure, lossle</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHD0cw0NcvRR8HMNCfcP8lbwcAzz9HNXcHVz83T2dPULUXD2cPTzc_VRcAwJAXI9_f0UNFydHTUVfF1BMp7BvjwMrGmJOcWpvFCam0HZzTXE2UM3tSA_PrW4IDE5NS-1JD7c38jAyMTQ0NjSxNTR0Jg4VQBmKCuP</recordid><startdate>20240606</startdate><enddate>20240606</enddate><creator>ZHAO, Xiongbo</creator><creator>WU, Songling</creator><creator>LI, Xiaomin</creator><creator>JIN, Ruixi</creator><creator>ZHANG, Hui</creator><creator>WANG, Xiaofeng</creator><creator>ZHOU, Hui</creator><creator>YANG, Junyu</creator><creator>XIE, Yujia</creator><creator>LI, Yue</creator><creator>LIN, Ping</creator><creator>LU, Kunfeng</creator><creator>ZHANG, Juan</creator><creator>CONG, Longjian</creator><creator>GAI, Yifan</creator><creator>WEI, Xiaodan</creator><creator>LIN, Yuye</creator><scope>EVB</scope></search><sort><creationdate>20240606</creationdate><title>NEURAL NETWORK HAVING EFFICIENT CHANNEL ATTENTION (ECA) MECHANISM</title><author>ZHAO, Xiongbo ; WU, Songling ; LI, Xiaomin ; JIN, Ruixi ; ZHANG, Hui ; WANG, Xiaofeng ; ZHOU, Hui ; YANG, Junyu ; XIE, Yujia ; LI, Yue ; LIN, Ping ; LU, Kunfeng ; ZHANG, Juan ; CONG, Longjian ; GAI, Yifan ; WEI, Xiaodan ; LIN, Yuye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2024113945A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHAO, Xiongbo</creatorcontrib><creatorcontrib>WU, Songling</creatorcontrib><creatorcontrib>LI, Xiaomin</creatorcontrib><creatorcontrib>JIN, Ruixi</creatorcontrib><creatorcontrib>ZHANG, Hui</creatorcontrib><creatorcontrib>WANG, Xiaofeng</creatorcontrib><creatorcontrib>ZHOU, Hui</creatorcontrib><creatorcontrib>YANG, Junyu</creatorcontrib><creatorcontrib>XIE, Yujia</creatorcontrib><creatorcontrib>LI, Yue</creatorcontrib><creatorcontrib>LIN, Ping</creatorcontrib><creatorcontrib>LU, Kunfeng</creatorcontrib><creatorcontrib>ZHANG, Juan</creatorcontrib><creatorcontrib>CONG, Longjian</creatorcontrib><creatorcontrib>GAI, Yifan</creatorcontrib><creatorcontrib>WEI, Xiaodan</creatorcontrib><creatorcontrib>LIN, Yuye</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>ZHAO, Xiongbo</au><au>WU, Songling</au><au>LI, Xiaomin</au><au>JIN, Ruixi</au><au>ZHANG, Hui</au><au>WANG, Xiaofeng</au><au>ZHOU, Hui</au><au>YANG, Junyu</au><au>XIE, Yujia</au><au>LI, Yue</au><au>LIN, Ping</au><au>LU, Kunfeng</au><au>ZHANG, Juan</au><au>CONG, Longjian</au><au>GAI, Yifan</au><au>WEI, Xiaodan</au><au>LIN, Yuye</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEURAL NETWORK HAVING EFFICIENT CHANNEL ATTENTION (ECA) MECHANISM</title><date>2024-06-06</date><risdate>2024</risdate><abstract>The present disclosure relates to a neural network having an ECA channel attention mechanism. The neural network comprises an ECA channel attention device. The ECA channel attention device comprises: a first hierarchical quantization unit used for performing hierarchical quantization on input data and converting floating-point number input data into fixed-point number input data, wherein in the first hierarchical quantization module, the whole input tensor shares a quantization step size and a quantization zero point; a channel-level quantization unit used for performing hierarchical quantization on output of an activation layer, wherein the channel-level quantization module separately calculates a quantization step size and a quantization zero point for each channel; and a channel multiplication weighting module used for performing channel weighting multiplication calculation on first hierarchical quantization output data and channel-level quantization output data. According to the present disclosure, lossle</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2024113945A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title NEURAL NETWORK HAVING EFFICIENT CHANNEL ATTENTION (ECA) MECHANISM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=ZHAO,%20Xiongbo&rft.date=2024-06-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2024113945A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true