FALL BEHAVIOR IDENTIFICATION METHOD BASED ON VIDEO CLASSIFICATION AND ELECTRONIC DEVICE

The present invention relates to the technical field of video monitoring, provides a fall behavior identification method based on video classification and an electronic device, and solves the problem of low identification accuracy of fall detection technology. The method comprises: detecting human s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN, Lei, WANG, Sijun, SUN, Najiao, DAI, Lin, QU, Guanming, CHEN, Dongliang, WANG, Rujie
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN, Lei
WANG, Sijun
SUN, Najiao
DAI, Lin
QU, Guanming
CHEN, Dongliang
WANG, Rujie
description The present invention relates to the technical field of video monitoring, provides a fall behavior identification method based on video classification and an electronic device, and solves the problem of low identification accuracy of fall detection technology. The method comprises: detecting human skeleton key points in a video frame image to be identified; tracking a human target on the basis of the human skeleton key points, and acquiring a motion trajectory of the human target and the motion change process of the human skeleton key points; identifying a fall behavior in a human skeleton sequence diagram by using an ST-GCN model to obtain a first identification result; identifying a fall behavior in a video sequence by using an S3DFAST double-flow model to obtain a second identification result; and carrying out comprehensive judgment on the first identification result and the second identification result to obtain a final fall identification result. La présente invention se rapporte au domaine technique de
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2024103682A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2024103682A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2024103682A13</originalsourceid><addsrcrecordid>eNqNirEKwjAUALM4iPoPD5yFNhXp-pq8kAcxgSakYykSJ9FC_X_sILg6HcfdVgwGnYOOLGYOPbAmn9iwwsTBw5WSDRo6jKRh9bz2AMphjL8JvQZypFIfPCvQlFnRXmzu02Mphy934mgoKXsq82ssyzzdyrO8xyHISp7rqrm0Euvmv-sDWCYxig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>FALL BEHAVIOR IDENTIFICATION METHOD BASED ON VIDEO CLASSIFICATION AND ELECTRONIC DEVICE</title><source>esp@cenet</source><creator>CHEN, Lei ; WANG, Sijun ; SUN, Najiao ; DAI, Lin ; QU, Guanming ; CHEN, Dongliang ; WANG, Rujie</creator><creatorcontrib>CHEN, Lei ; WANG, Sijun ; SUN, Najiao ; DAI, Lin ; QU, Guanming ; CHEN, Dongliang ; WANG, Rujie</creatorcontrib><description>The present invention relates to the technical field of video monitoring, provides a fall behavior identification method based on video classification and an electronic device, and solves the problem of low identification accuracy of fall detection technology. The method comprises: detecting human skeleton key points in a video frame image to be identified; tracking a human target on the basis of the human skeleton key points, and acquiring a motion trajectory of the human target and the motion change process of the human skeleton key points; identifying a fall behavior in a human skeleton sequence diagram by using an ST-GCN model to obtain a first identification result; identifying a fall behavior in a video sequence by using an S3DFAST double-flow model to obtain a second identification result; and carrying out comprehensive judgment on the first identification result and the second identification result to obtain a final fall identification result. La présente invention se rapporte au domaine technique de</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240523&amp;DB=EPODOC&amp;CC=WO&amp;NR=2024103682A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240523&amp;DB=EPODOC&amp;CC=WO&amp;NR=2024103682A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN, Lei</creatorcontrib><creatorcontrib>WANG, Sijun</creatorcontrib><creatorcontrib>SUN, Najiao</creatorcontrib><creatorcontrib>DAI, Lin</creatorcontrib><creatorcontrib>QU, Guanming</creatorcontrib><creatorcontrib>CHEN, Dongliang</creatorcontrib><creatorcontrib>WANG, Rujie</creatorcontrib><title>FALL BEHAVIOR IDENTIFICATION METHOD BASED ON VIDEO CLASSIFICATION AND ELECTRONIC DEVICE</title><description>The present invention relates to the technical field of video monitoring, provides a fall behavior identification method based on video classification and an electronic device, and solves the problem of low identification accuracy of fall detection technology. The method comprises: detecting human skeleton key points in a video frame image to be identified; tracking a human target on the basis of the human skeleton key points, and acquiring a motion trajectory of the human target and the motion change process of the human skeleton key points; identifying a fall behavior in a human skeleton sequence diagram by using an ST-GCN model to obtain a first identification result; identifying a fall behavior in a video sequence by using an S3DFAST double-flow model to obtain a second identification result; and carrying out comprehensive judgment on the first identification result and the second identification result to obtain a final fall identification result. La présente invention se rapporte au domaine technique de</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAUALM4iPoPD5yFNhXp-pq8kAcxgSakYykSJ9FC_X_sILg6HcfdVgwGnYOOLGYOPbAmn9iwwsTBw5WSDRo6jKRh9bz2AMphjL8JvQZypFIfPCvQlFnRXmzu02Mphy934mgoKXsq82ssyzzdyrO8xyHISp7rqrm0Euvmv-sDWCYxig</recordid><startdate>20240523</startdate><enddate>20240523</enddate><creator>CHEN, Lei</creator><creator>WANG, Sijun</creator><creator>SUN, Najiao</creator><creator>DAI, Lin</creator><creator>QU, Guanming</creator><creator>CHEN, Dongliang</creator><creator>WANG, Rujie</creator><scope>EVB</scope></search><sort><creationdate>20240523</creationdate><title>FALL BEHAVIOR IDENTIFICATION METHOD BASED ON VIDEO CLASSIFICATION AND ELECTRONIC DEVICE</title><author>CHEN, Lei ; WANG, Sijun ; SUN, Najiao ; DAI, Lin ; QU, Guanming ; CHEN, Dongliang ; WANG, Rujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2024103682A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Lei</creatorcontrib><creatorcontrib>WANG, Sijun</creatorcontrib><creatorcontrib>SUN, Najiao</creatorcontrib><creatorcontrib>DAI, Lin</creatorcontrib><creatorcontrib>QU, Guanming</creatorcontrib><creatorcontrib>CHEN, Dongliang</creatorcontrib><creatorcontrib>WANG, Rujie</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN, Lei</au><au>WANG, Sijun</au><au>SUN, Najiao</au><au>DAI, Lin</au><au>QU, Guanming</au><au>CHEN, Dongliang</au><au>WANG, Rujie</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>FALL BEHAVIOR IDENTIFICATION METHOD BASED ON VIDEO CLASSIFICATION AND ELECTRONIC DEVICE</title><date>2024-05-23</date><risdate>2024</risdate><abstract>The present invention relates to the technical field of video monitoring, provides a fall behavior identification method based on video classification and an electronic device, and solves the problem of low identification accuracy of fall detection technology. The method comprises: detecting human skeleton key points in a video frame image to be identified; tracking a human target on the basis of the human skeleton key points, and acquiring a motion trajectory of the human target and the motion change process of the human skeleton key points; identifying a fall behavior in a human skeleton sequence diagram by using an ST-GCN model to obtain a first identification result; identifying a fall behavior in a video sequence by using an S3DFAST double-flow model to obtain a second identification result; and carrying out comprehensive judgment on the first identification result and the second identification result to obtain a final fall identification result. La présente invention se rapporte au domaine technique de</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2024103682A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
PHYSICS
title FALL BEHAVIOR IDENTIFICATION METHOD BASED ON VIDEO CLASSIFICATION AND ELECTRONIC DEVICE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN,%20Lei&rft.date=2024-05-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2024103682A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true