MOUNTAINOUS AREA SLOPE DISPLACEMENT PREDICTION METHOD BASED ON MI-GRA AND IMPROVED PSO-LSTM

Disclosed in the present invention is a mountainous area slope displacement prediction method based on MI-GRA and an improved PSO-LSTM. The method comprises the following steps: (1) collecting and constructing original data for slope displacement prediction; (2) on the basis of the constructed origi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: WANG, Wubin, LI, Yandong, DENG, Zhixing, DONG, Minqi, XIE, Kang
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator WANG, Wubin
LI, Yandong
DENG, Zhixing
DONG, Minqi
XIE, Kang
description Disclosed in the present invention is a mountainous area slope displacement prediction method based on MI-GRA and an improved PSO-LSTM. The method comprises the following steps: (1) collecting and constructing original data for slope displacement prediction; (2) on the basis of the constructed original data for slope displacement prediction, establishing an MI-GRA-based slope displacement feature selection model; (3) using data subjected to feature selection as an optimal feature set input for slope displacement prediction, and establishing an improved-PSO-LSTM-based slope displacement prediction model; and (4) performing model prediction and testing on the established slope prediction model. The present method solves the problems of: a previous prediction algorithm itself having a static characteristic and being unable to consider historical information of slope displacement, thereby restricting the improvement of the prediction precision; previous slope displacement prediction only focusing on the displacem
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2024001942A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2024001942A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2024001942A13</originalsourceid><addsrcrecordid>eNqNirEKwjAUALs4iPoPD5wDbezi-EyeNtDkhSStg0MpEifRQv1_VPADnI47bllcLHcuoXHcRcBACLFlT6BN9C0qsuQS-EDaqGTYgaXUsIYDRtLwdSNOAQGdBmN94P6TfWTRxmTXxeI23ue8-XFVbI-UVCPy9BzyPI3X_Miv4cyylHVZVvtaYrX773oDT6oy3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>MOUNTAINOUS AREA SLOPE DISPLACEMENT PREDICTION METHOD BASED ON MI-GRA AND IMPROVED PSO-LSTM</title><source>esp@cenet</source><creator>WANG, Wubin ; LI, Yandong ; DENG, Zhixing ; DONG, Minqi ; XIE, Kang</creator><creatorcontrib>WANG, Wubin ; LI, Yandong ; DENG, Zhixing ; DONG, Minqi ; XIE, Kang</creatorcontrib><description>Disclosed in the present invention is a mountainous area slope displacement prediction method based on MI-GRA and an improved PSO-LSTM. The method comprises the following steps: (1) collecting and constructing original data for slope displacement prediction; (2) on the basis of the constructed original data for slope displacement prediction, establishing an MI-GRA-based slope displacement feature selection model; (3) using data subjected to feature selection as an optimal feature set input for slope displacement prediction, and establishing an improved-PSO-LSTM-based slope displacement prediction model; and (4) performing model prediction and testing on the established slope prediction model. The present method solves the problems of: a previous prediction algorithm itself having a static characteristic and being unable to consider historical information of slope displacement, thereby restricting the improvement of the prediction precision; previous slope displacement prediction only focusing on the displacem</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2024</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240104&amp;DB=EPODOC&amp;CC=WO&amp;NR=2024001942A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20240104&amp;DB=EPODOC&amp;CC=WO&amp;NR=2024001942A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG, Wubin</creatorcontrib><creatorcontrib>LI, Yandong</creatorcontrib><creatorcontrib>DENG, Zhixing</creatorcontrib><creatorcontrib>DONG, Minqi</creatorcontrib><creatorcontrib>XIE, Kang</creatorcontrib><title>MOUNTAINOUS AREA SLOPE DISPLACEMENT PREDICTION METHOD BASED ON MI-GRA AND IMPROVED PSO-LSTM</title><description>Disclosed in the present invention is a mountainous area slope displacement prediction method based on MI-GRA and an improved PSO-LSTM. The method comprises the following steps: (1) collecting and constructing original data for slope displacement prediction; (2) on the basis of the constructed original data for slope displacement prediction, establishing an MI-GRA-based slope displacement feature selection model; (3) using data subjected to feature selection as an optimal feature set input for slope displacement prediction, and establishing an improved-PSO-LSTM-based slope displacement prediction model; and (4) performing model prediction and testing on the established slope prediction model. The present method solves the problems of: a previous prediction algorithm itself having a static characteristic and being unable to consider historical information of slope displacement, thereby restricting the improvement of the prediction precision; previous slope displacement prediction only focusing on the displacem</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2024</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNirEKwjAUALs4iPoPD5wDbezi-EyeNtDkhSStg0MpEifRQv1_VPADnI47bllcLHcuoXHcRcBACLFlT6BN9C0qsuQS-EDaqGTYgaXUsIYDRtLwdSNOAQGdBmN94P6TfWTRxmTXxeI23ue8-XFVbI-UVCPy9BzyPI3X_Miv4cyylHVZVvtaYrX773oDT6oy3A</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>WANG, Wubin</creator><creator>LI, Yandong</creator><creator>DENG, Zhixing</creator><creator>DONG, Minqi</creator><creator>XIE, Kang</creator><scope>EVB</scope></search><sort><creationdate>20240104</creationdate><title>MOUNTAINOUS AREA SLOPE DISPLACEMENT PREDICTION METHOD BASED ON MI-GRA AND IMPROVED PSO-LSTM</title><author>WANG, Wubin ; LI, Yandong ; DENG, Zhixing ; DONG, Minqi ; XIE, Kang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2024001942A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2024</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG, Wubin</creatorcontrib><creatorcontrib>LI, Yandong</creatorcontrib><creatorcontrib>DENG, Zhixing</creatorcontrib><creatorcontrib>DONG, Minqi</creatorcontrib><creatorcontrib>XIE, Kang</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG, Wubin</au><au>LI, Yandong</au><au>DENG, Zhixing</au><au>DONG, Minqi</au><au>XIE, Kang</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>MOUNTAINOUS AREA SLOPE DISPLACEMENT PREDICTION METHOD BASED ON MI-GRA AND IMPROVED PSO-LSTM</title><date>2024-01-04</date><risdate>2024</risdate><abstract>Disclosed in the present invention is a mountainous area slope displacement prediction method based on MI-GRA and an improved PSO-LSTM. The method comprises the following steps: (1) collecting and constructing original data for slope displacement prediction; (2) on the basis of the constructed original data for slope displacement prediction, establishing an MI-GRA-based slope displacement feature selection model; (3) using data subjected to feature selection as an optimal feature set input for slope displacement prediction, and establishing an improved-PSO-LSTM-based slope displacement prediction model; and (4) performing model prediction and testing on the established slope prediction model. The present method solves the problems of: a previous prediction algorithm itself having a static characteristic and being unable to consider historical information of slope displacement, thereby restricting the improvement of the prediction precision; previous slope displacement prediction only focusing on the displacem</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2024001942A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title MOUNTAINOUS AREA SLOPE DISPLACEMENT PREDICTION METHOD BASED ON MI-GRA AND IMPROVED PSO-LSTM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A46%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG,%20Wubin&rft.date=2024-01-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2024001942A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true