SENSOR NETWORK COVERAGE OPTIMIZATION METHOD BASED ON NOVEL COMPACT PARTICLE SWARM ALGORITHM

The present invention relates to the technical field of intelligent calculation. Disclosed is a sensor network coverage optimization method based on a novel compact particle swarm algorithm. A novel compact particle swarm optimization algorithm is utilized to optimize network coverage of sensors. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: LIU, Ning, ZHENG, Weimin, LIU, Shangkun, CHAI, Qingwei
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator LIU, Ning
ZHENG, Weimin
LIU, Shangkun
CHAI, Qingwei
description The present invention relates to the technical field of intelligent calculation. Disclosed is a sensor network coverage optimization method based on a novel compact particle swarm algorithm. A novel compact particle swarm optimization algorithm is utilized to optimize network coverage of sensors. In the novel compact particle swarm optimization algorithm, the Pareto distribution is used to describe the location of a particle swarm, and a Gaussian perturbation policy is synchronously added. Sensors in a sensor network coverage optimization problem are equivalent to a particle swarm in the optimization algorithm. The sensors are randomly arranged in an initial environment, and then the locations of the sensors are moved and optimized according to the optimization algorithm. The coverage of the sensors after each movement corresponds to a fitness value in the algorithm. The locations of the sensors are determined according to the dimensions of particles and a three-dimensional simulated environment diagram. Fina
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2023245939A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2023245939A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2023245939A13</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEuDqK-w4GzoK0OHc_0bINNriSHAR1KkTiJFur7YwYfwOnnh2-e3TxZzw4sSWB3BsUXclgTcCfa6CuKZguGpOEKjuipgvQ2qTZZ06ES6NCJVi2BD-gMYFuz09KYZTZ7DM8prn5dZOsTiWo2cXz3cRqHe3zFTx843-ZFvj-URYm74j_1BYcNM2Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>SENSOR NETWORK COVERAGE OPTIMIZATION METHOD BASED ON NOVEL COMPACT PARTICLE SWARM ALGORITHM</title><source>esp@cenet</source><creator>LIU, Ning ; ZHENG, Weimin ; LIU, Shangkun ; CHAI, Qingwei</creator><creatorcontrib>LIU, Ning ; ZHENG, Weimin ; LIU, Shangkun ; CHAI, Qingwei</creatorcontrib><description>The present invention relates to the technical field of intelligent calculation. Disclosed is a sensor network coverage optimization method based on a novel compact particle swarm algorithm. A novel compact particle swarm optimization algorithm is utilized to optimize network coverage of sensors. In the novel compact particle swarm optimization algorithm, the Pareto distribution is used to describe the location of a particle swarm, and a Gaussian perturbation policy is synchronously added. Sensors in a sensor network coverage optimization problem are equivalent to a particle swarm in the optimization algorithm. The sensors are randomly arranged in an initial environment, and then the locations of the sensors are moved and optimized according to the optimization algorithm. The coverage of the sensors after each movement corresponds to a fitness value in the algorithm. The locations of the sensors are determined according to the dimensions of particles and a three-dimensional simulated environment diagram. Fina</description><language>chi ; eng ; fre</language><subject>ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; WIRELESS COMMUNICATIONS NETWORKS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231228&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023245939A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231228&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023245939A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LIU, Ning</creatorcontrib><creatorcontrib>ZHENG, Weimin</creatorcontrib><creatorcontrib>LIU, Shangkun</creatorcontrib><creatorcontrib>CHAI, Qingwei</creatorcontrib><title>SENSOR NETWORK COVERAGE OPTIMIZATION METHOD BASED ON NOVEL COMPACT PARTICLE SWARM ALGORITHM</title><description>The present invention relates to the technical field of intelligent calculation. Disclosed is a sensor network coverage optimization method based on a novel compact particle swarm algorithm. A novel compact particle swarm optimization algorithm is utilized to optimize network coverage of sensors. In the novel compact particle swarm optimization algorithm, the Pareto distribution is used to describe the location of a particle swarm, and a Gaussian perturbation policy is synchronously added. Sensors in a sensor network coverage optimization problem are equivalent to a particle swarm in the optimization algorithm. The sensors are randomly arranged in an initial environment, and then the locations of the sensors are moved and optimized according to the optimization algorithm. The coverage of the sensors after each movement corresponds to a fitness value in the algorithm. The locations of the sensors are determined according to the dimensions of particles and a three-dimensional simulated environment diagram. Fina</description><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>WIRELESS COMMUNICATIONS NETWORKS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyrEKwjAQgOEuDqK-w4GzoK0OHc_0bINNriSHAR1KkTiJFur7YwYfwOnnh2-e3TxZzw4sSWB3BsUXclgTcCfa6CuKZguGpOEKjuipgvQ2qTZZ06ES6NCJVi2BD-gMYFuz09KYZTZ7DM8prn5dZOsTiWo2cXz3cRqHe3zFTx843-ZFvj-URYm74j_1BYcNM2Q</recordid><startdate>20231228</startdate><enddate>20231228</enddate><creator>LIU, Ning</creator><creator>ZHENG, Weimin</creator><creator>LIU, Shangkun</creator><creator>CHAI, Qingwei</creator><scope>EVB</scope></search><sort><creationdate>20231228</creationdate><title>SENSOR NETWORK COVERAGE OPTIMIZATION METHOD BASED ON NOVEL COMPACT PARTICLE SWARM ALGORITHM</title><author>LIU, Ning ; ZHENG, Weimin ; LIU, Shangkun ; CHAI, Qingwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2023245939A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2023</creationdate><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>WIRELESS COMMUNICATIONS NETWORKS</topic><toplevel>online_resources</toplevel><creatorcontrib>LIU, Ning</creatorcontrib><creatorcontrib>ZHENG, Weimin</creatorcontrib><creatorcontrib>LIU, Shangkun</creatorcontrib><creatorcontrib>CHAI, Qingwei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LIU, Ning</au><au>ZHENG, Weimin</au><au>LIU, Shangkun</au><au>CHAI, Qingwei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>SENSOR NETWORK COVERAGE OPTIMIZATION METHOD BASED ON NOVEL COMPACT PARTICLE SWARM ALGORITHM</title><date>2023-12-28</date><risdate>2023</risdate><abstract>The present invention relates to the technical field of intelligent calculation. Disclosed is a sensor network coverage optimization method based on a novel compact particle swarm algorithm. A novel compact particle swarm optimization algorithm is utilized to optimize network coverage of sensors. In the novel compact particle swarm optimization algorithm, the Pareto distribution is used to describe the location of a particle swarm, and a Gaussian perturbation policy is synchronously added. Sensors in a sensor network coverage optimization problem are equivalent to a particle swarm in the optimization algorithm. The sensors are randomly arranged in an initial environment, and then the locations of the sensors are moved and optimized according to the optimization algorithm. The coverage of the sensors after each movement corresponds to a fitness value in the algorithm. The locations of the sensors are determined according to the dimensions of particles and a three-dimensional simulated environment diagram. Fina</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2023245939A1
source esp@cenet
subjects ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
WIRELESS COMMUNICATIONS NETWORKS
title SENSOR NETWORK COVERAGE OPTIMIZATION METHOD BASED ON NOVEL COMPACT PARTICLE SWARM ALGORITHM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A58%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LIU,%20Ning&rft.date=2023-12-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2023245939A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true