PEPTIDE BINDING MOTIF GENERATION
Methods and systems for peptide generation include training (204) a peptide mutation policy neural network using reinforcement learning that includes a peptide presentation score as a reward. New peptides are generated (212) using the peptide mutation policy. A binding motif of a major histocompatib...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MIN, Renqiang GRAF, Hans Peter |
description | Methods and systems for peptide generation include training (204) a peptide mutation policy neural network using reinforcement learning that includes a peptide presentation score as a reward. New peptides are generated (212) using the peptide mutation policy. A binding motif of a major histocompatibility complex is calculated (214) using the new peptides. Library peptides are screened (216) in accordance with the binding motif.
Des procédés et des systèmes de génération de peptide comprennent l'apprentissage (204) d'un réseau neuronal de politique de mutation peptidique à l'aide d'un apprentissage par renforcement qui comprend un score de présentation de peptide en tant que récompense. De nouveaux peptides sont générés (212) à l'aide de la politique de mutation peptidique. Un motif de liaison d'un complexe majeur d'histocompatibilité est calculé (214) à l'aide des nouveaux peptides. Des peptides de banque sont criblés (216) conformément au motif de liaison. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2023225250A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2023225250A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2023225250A13</originalsourceid><addsrcrecordid>eNrjZFAIcA0I8XRxVXDy9HPx9HNX8PUP8XRTcHf1cw1yDPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfHh_kYGRsZGRqZGpgaOhsbEqQIAdfQitg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>PEPTIDE BINDING MOTIF GENERATION</title><source>esp@cenet</source><creator>MIN, Renqiang ; GRAF, Hans Peter</creator><creatorcontrib>MIN, Renqiang ; GRAF, Hans Peter</creatorcontrib><description>Methods and systems for peptide generation include training (204) a peptide mutation policy neural network using reinforcement learning that includes a peptide presentation score as a reward. New peptides are generated (212) using the peptide mutation policy. A binding motif of a major histocompatibility complex is calculated (214) using the new peptides. Library peptides are screened (216) in accordance with the binding motif.
Des procédés et des systèmes de génération de peptide comprennent l'apprentissage (204) d'un réseau neuronal de politique de mutation peptidique à l'aide d'un apprentissage par renforcement qui comprend un score de présentation de peptide en tant que récompense. De nouveaux peptides sont générés (212) à l'aide de la politique de mutation peptidique. Un motif de liaison d'un complexe majeur d'histocompatibilité est calculé (214) à l'aide des nouveaux peptides. Des peptides de banque sont criblés (216) conformément au motif de liaison.</description><language>eng ; fre</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231123&DB=EPODOC&CC=WO&NR=2023225250A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20231123&DB=EPODOC&CC=WO&NR=2023225250A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MIN, Renqiang</creatorcontrib><creatorcontrib>GRAF, Hans Peter</creatorcontrib><title>PEPTIDE BINDING MOTIF GENERATION</title><description>Methods and systems for peptide generation include training (204) a peptide mutation policy neural network using reinforcement learning that includes a peptide presentation score as a reward. New peptides are generated (212) using the peptide mutation policy. A binding motif of a major histocompatibility complex is calculated (214) using the new peptides. Library peptides are screened (216) in accordance with the binding motif.
Des procédés et des systèmes de génération de peptide comprennent l'apprentissage (204) d'un réseau neuronal de politique de mutation peptidique à l'aide d'un apprentissage par renforcement qui comprend un score de présentation de peptide en tant que récompense. De nouveaux peptides sont générés (212) à l'aide de la politique de mutation peptidique. Un motif de liaison d'un complexe majeur d'histocompatibilité est calculé (214) à l'aide des nouveaux peptides. Des peptides de banque sont criblés (216) conformément au motif de liaison.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFAIcA0I8XRxVXDy9HPx9HNX8PUP8XRTcHf1cw1yDPH09-NhYE1LzClO5YXS3AzKbq4hzh66qQX58anFBYnJqXmpJfHh_kYGRsZGRqZGpgaOhsbEqQIAdfQitg</recordid><startdate>20231123</startdate><enddate>20231123</enddate><creator>MIN, Renqiang</creator><creator>GRAF, Hans Peter</creator><scope>EVB</scope></search><sort><creationdate>20231123</creationdate><title>PEPTIDE BINDING MOTIF GENERATION</title><author>MIN, Renqiang ; GRAF, Hans Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2023225250A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>MIN, Renqiang</creatorcontrib><creatorcontrib>GRAF, Hans Peter</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MIN, Renqiang</au><au>GRAF, Hans Peter</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>PEPTIDE BINDING MOTIF GENERATION</title><date>2023-11-23</date><risdate>2023</risdate><abstract>Methods and systems for peptide generation include training (204) a peptide mutation policy neural network using reinforcement learning that includes a peptide presentation score as a reward. New peptides are generated (212) using the peptide mutation policy. A binding motif of a major histocompatibility complex is calculated (214) using the new peptides. Library peptides are screened (216) in accordance with the binding motif.
Des procédés et des systèmes de génération de peptide comprennent l'apprentissage (204) d'un réseau neuronal de politique de mutation peptidique à l'aide d'un apprentissage par renforcement qui comprend un score de présentation de peptide en tant que récompense. De nouveaux peptides sont générés (212) à l'aide de la politique de mutation peptidique. Un motif de liaison d'un complexe majeur d'histocompatibilité est calculé (214) à l'aide des nouveaux peptides. Des peptides de banque sont criblés (216) conformément au motif de liaison.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre |
recordid | cdi_epo_espacenet_WO2023225250A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS PHYSICS |
title | PEPTIDE BINDING MOTIF GENERATION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A00%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MIN,%20Renqiang&rft.date=2023-11-23&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2023225250A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |