BLOOD GLUCOSE PREDICTION METHOD AND DEVICE COMBINING BIG DATA MODEL AND PERSONALIZED MODEL

A blood glucose prediction method and device combining a big data model and a personalized model. The method comprises: training a big data blood glucose prediction model; receiving a first collected data set of a specified object; when a first data type is a label type, according to the first colle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CAO, Jun, LI, Ruilai, ZHANG, Hongpan, ZHANG, Biying
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CAO, Jun
LI, Ruilai
ZHANG, Hongpan
ZHANG, Biying
description A blood glucose prediction method and device combining a big data model and a personalized model. The method comprises: training a big data blood glucose prediction model; receiving a first collected data set of a specified object; when a first data type is a label type, according to the first collected data set, updating a personalized database; if the updating is successful, counting the total number of personalized data records to generate a first total number; if the first total number is greater than or equal to a first threshold value, screening personalized data calibrated records; if the first total number is equal to a second threshold value, training a personalized blood glucose prediction model; when the first data type is a prediction type, counting the total number of personalized data records to generate a second total number; if the second total number is smaller than the second threshold value, on the basis of the big data blood glucose prediction model, making a prediction; and if the second
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2023197426A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2023197426A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2023197426A13</originalsourceid><addsrcrecordid>eNqNikEKwjAQAHPxIOofFjwLthXFY5pd24UkW9qo0EspEk-ihfp_FPUBngZmZqra3IogFPZopCGoakI2gcWDo1C-i_YISCc2BEZczp59ATkXgDpocIJkP09FdSNeW24Jv3quJtf-NsbFjzO1PFAw5SoOjy6OQ3-J9_jszpKu0yzZ7zbpVifZf9cL1ogyNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>BLOOD GLUCOSE PREDICTION METHOD AND DEVICE COMBINING BIG DATA MODEL AND PERSONALIZED MODEL</title><source>esp@cenet</source><creator>CAO, Jun ; LI, Ruilai ; ZHANG, Hongpan ; ZHANG, Biying</creator><creatorcontrib>CAO, Jun ; LI, Ruilai ; ZHANG, Hongpan ; ZHANG, Biying</creatorcontrib><description>A blood glucose prediction method and device combining a big data model and a personalized model. The method comprises: training a big data blood glucose prediction model; receiving a first collected data set of a specified object; when a first data type is a label type, according to the first collected data set, updating a personalized database; if the updating is successful, counting the total number of personalized data records to generate a first total number; if the first total number is greater than or equal to a first threshold value, screening personalized data calibrated records; if the first total number is equal to a second threshold value, training a personalized blood glucose prediction model; when the first data type is a prediction type, counting the total number of personalized data records to generate a second total number; if the second total number is smaller than the second threshold value, on the basis of the big data blood glucose prediction model, making a prediction; and if the second</description><language>chi ; eng ; fre</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231019&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023197426A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20231019&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023197426A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CAO, Jun</creatorcontrib><creatorcontrib>LI, Ruilai</creatorcontrib><creatorcontrib>ZHANG, Hongpan</creatorcontrib><creatorcontrib>ZHANG, Biying</creatorcontrib><title>BLOOD GLUCOSE PREDICTION METHOD AND DEVICE COMBINING BIG DATA MODEL AND PERSONALIZED MODEL</title><description>A blood glucose prediction method and device combining a big data model and a personalized model. The method comprises: training a big data blood glucose prediction model; receiving a first collected data set of a specified object; when a first data type is a label type, according to the first collected data set, updating a personalized database; if the updating is successful, counting the total number of personalized data records to generate a first total number; if the first total number is greater than or equal to a first threshold value, screening personalized data calibrated records; if the first total number is equal to a second threshold value, training a personalized blood glucose prediction model; when the first data type is a prediction type, counting the total number of personalized data records to generate a second total number; if the second total number is smaller than the second threshold value, on the basis of the big data blood glucose prediction model, making a prediction; and if the second</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNikEKwjAQAHPxIOofFjwLthXFY5pd24UkW9qo0EspEk-ihfp_FPUBngZmZqra3IogFPZopCGoakI2gcWDo1C-i_YISCc2BEZczp59ATkXgDpocIJkP09FdSNeW24Jv3quJtf-NsbFjzO1PFAw5SoOjy6OQ3-J9_jszpKu0yzZ7zbpVifZf9cL1ogyNw</recordid><startdate>20231019</startdate><enddate>20231019</enddate><creator>CAO, Jun</creator><creator>LI, Ruilai</creator><creator>ZHANG, Hongpan</creator><creator>ZHANG, Biying</creator><scope>EVB</scope></search><sort><creationdate>20231019</creationdate><title>BLOOD GLUCOSE PREDICTION METHOD AND DEVICE COMBINING BIG DATA MODEL AND PERSONALIZED MODEL</title><author>CAO, Jun ; LI, Ruilai ; ZHANG, Hongpan ; ZHANG, Biying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2023197426A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2023</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>CAO, Jun</creatorcontrib><creatorcontrib>LI, Ruilai</creatorcontrib><creatorcontrib>ZHANG, Hongpan</creatorcontrib><creatorcontrib>ZHANG, Biying</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CAO, Jun</au><au>LI, Ruilai</au><au>ZHANG, Hongpan</au><au>ZHANG, Biying</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>BLOOD GLUCOSE PREDICTION METHOD AND DEVICE COMBINING BIG DATA MODEL AND PERSONALIZED MODEL</title><date>2023-10-19</date><risdate>2023</risdate><abstract>A blood glucose prediction method and device combining a big data model and a personalized model. The method comprises: training a big data blood glucose prediction model; receiving a first collected data set of a specified object; when a first data type is a label type, according to the first collected data set, updating a personalized database; if the updating is successful, counting the total number of personalized data records to generate a first total number; if the first total number is greater than or equal to a first threshold value, screening personalized data calibrated records; if the first total number is equal to a second threshold value, training a personalized blood glucose prediction model; when the first data type is a prediction type, counting the total number of personalized data records to generate a second total number; if the second total number is smaller than the second threshold value, on the basis of the big data blood glucose prediction model, making a prediction; and if the second</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2023197426A1
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title BLOOD GLUCOSE PREDICTION METHOD AND DEVICE COMBINING BIG DATA MODEL AND PERSONALIZED MODEL
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CAO,%20Jun&rft.date=2023-10-19&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2023197426A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true