UNSUPERVISED LEARNING-BASED MEDICAL DATA ANALYSIS DEVICE AND METHOD

The present invention relates to an unsupervised learning-based medical data analysis device and method, in which an anomaly in medical data is detected and notified of using a generative adversarial network-based machine learning model, thereby enabling accurate and quick identification, and also e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KO, Jae Yeoung, BAE, Hyun Jin
Format: Patent
Sprache:eng ; fre ; kor
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KO, Jae Yeoung
BAE, Hyun Jin
description The present invention relates to an unsupervised learning-based medical data analysis device and method, in which an anomaly in medical data is detected and notified of using a generative adversarial network-based machine learning model, thereby enabling accurate and quick identification, and also enabling the reduction of both time and costs incurring from the identification. La présente invention concerne un dispositif et un procédé d'analyse de données médicales reposant sur un apprentissage non supervisé, dans lesquels une anomalie dans des données médicales est détectée et notifiée à l'aide d'un modèle d'apprentissage automatique basé sur un réseau antagoniste génératif, ce qui permet de réaliser une identification précise et rapide et de réduire en outre le temps et les coûts liés à l'identification. 본 발명은 비지도 학습 기반 의료 데이터 분석 장치 및 방법에 관한 것으로, 적대적 생성 신경망을 기반으로 하는 기계학습 모델을 이용하여 의료 데이터의 이상을 탐지하여 알려줌으로써, 정확하면서도 신속한 판독이 가능하도록 하는 것은 물론 판독에 의해 발생하는 시간 및 비용을 모두 절감할 수 있도록 한다.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2023176992A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2023176992A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2023176992A13</originalsourceid><addsrcrecordid>eNrjZHAO9QsODXANCvMMdnVR8HF1DPLz9HPXdXIEcX1dXTydHX0UXBxDHBUc_Rx9IoM9gxVcXMM8nV2BfJCCEA9_Fx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh_ub2RgZGxobmZpaeRoaEycKgDPDSxG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>UNSUPERVISED LEARNING-BASED MEDICAL DATA ANALYSIS DEVICE AND METHOD</title><source>esp@cenet</source><creator>KO, Jae Yeoung ; BAE, Hyun Jin</creator><creatorcontrib>KO, Jae Yeoung ; BAE, Hyun Jin</creatorcontrib><description>The present invention relates to an unsupervised learning-based medical data analysis device and method, in which an anomaly in medical data is detected and notified of using a generative adversarial network-based machine learning model, thereby enabling accurate and quick identification, and also enabling the reduction of both time and costs incurring from the identification. La présente invention concerne un dispositif et un procédé d'analyse de données médicales reposant sur un apprentissage non supervisé, dans lesquels une anomalie dans des données médicales est détectée et notifiée à l'aide d'un modèle d'apprentissage automatique basé sur un réseau antagoniste génératif, ce qui permet de réaliser une identification précise et rapide et de réduire en outre le temps et les coûts liés à l'identification. 본 발명은 비지도 학습 기반 의료 데이터 분석 장치 및 방법에 관한 것으로, 적대적 생성 신경망을 기반으로 하는 기계학습 모델을 이용하여 의료 데이터의 이상을 탐지하여 알려줌으로써, 정확하면서도 신속한 판독이 가능하도록 하는 것은 물론 판독에 의해 발생하는 시간 및 비용을 모두 절감할 수 있도록 한다.</description><language>eng ; fre ; kor</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230921&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023176992A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230921&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023176992A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KO, Jae Yeoung</creatorcontrib><creatorcontrib>BAE, Hyun Jin</creatorcontrib><title>UNSUPERVISED LEARNING-BASED MEDICAL DATA ANALYSIS DEVICE AND METHOD</title><description>The present invention relates to an unsupervised learning-based medical data analysis device and method, in which an anomaly in medical data is detected and notified of using a generative adversarial network-based machine learning model, thereby enabling accurate and quick identification, and also enabling the reduction of both time and costs incurring from the identification. La présente invention concerne un dispositif et un procédé d'analyse de données médicales reposant sur un apprentissage non supervisé, dans lesquels une anomalie dans des données médicales est détectée et notifiée à l'aide d'un modèle d'apprentissage automatique basé sur un réseau antagoniste génératif, ce qui permet de réaliser une identification précise et rapide et de réduire en outre le temps et les coûts liés à l'identification. 본 발명은 비지도 학습 기반 의료 데이터 분석 장치 및 방법에 관한 것으로, 적대적 생성 신경망을 기반으로 하는 기계학습 모델을 이용하여 의료 데이터의 이상을 탐지하여 알려줌으로써, 정확하면서도 신속한 판독이 가능하도록 하는 것은 물론 판독에 의해 발생하는 시간 및 비용을 모두 절감할 수 있도록 한다.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZHAO9QsODXANCvMMdnVR8HF1DPLz9HPXdXIEcX1dXTydHX0UXBxDHBUc_Rx9IoM9gxVcXMM8nV2BfJCCEA9_Fx4G1rTEnOJUXijNzaDs5hri7KGbWpAfn1pckJicmpdaEh_ub2RgZGxobmZpaeRoaEycKgDPDSxG</recordid><startdate>20230921</startdate><enddate>20230921</enddate><creator>KO, Jae Yeoung</creator><creator>BAE, Hyun Jin</creator><scope>EVB</scope></search><sort><creationdate>20230921</creationdate><title>UNSUPERVISED LEARNING-BASED MEDICAL DATA ANALYSIS DEVICE AND METHOD</title><author>KO, Jae Yeoung ; BAE, Hyun Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2023176992A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre ; kor</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>KO, Jae Yeoung</creatorcontrib><creatorcontrib>BAE, Hyun Jin</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KO, Jae Yeoung</au><au>BAE, Hyun Jin</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>UNSUPERVISED LEARNING-BASED MEDICAL DATA ANALYSIS DEVICE AND METHOD</title><date>2023-09-21</date><risdate>2023</risdate><abstract>The present invention relates to an unsupervised learning-based medical data analysis device and method, in which an anomaly in medical data is detected and notified of using a generative adversarial network-based machine learning model, thereby enabling accurate and quick identification, and also enabling the reduction of both time and costs incurring from the identification. La présente invention concerne un dispositif et un procédé d'analyse de données médicales reposant sur un apprentissage non supervisé, dans lesquels une anomalie dans des données médicales est détectée et notifiée à l'aide d'un modèle d'apprentissage automatique basé sur un réseau antagoniste génératif, ce qui permet de réaliser une identification précise et rapide et de réduire en outre le temps et les coûts liés à l'identification. 본 발명은 비지도 학습 기반 의료 데이터 분석 장치 및 방법에 관한 것으로, 적대적 생성 신경망을 기반으로 하는 기계학습 모델을 이용하여 의료 데이터의 이상을 탐지하여 알려줌으로써, 정확하면서도 신속한 판독이 가능하도록 하는 것은 물론 판독에 의해 발생하는 시간 및 비용을 모두 절감할 수 있도록 한다.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre ; kor
recordid cdi_epo_espacenet_WO2023176992A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title UNSUPERVISED LEARNING-BASED MEDICAL DATA ANALYSIS DEVICE AND METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A34%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KO,%20Jae%20Yeoung&rft.date=2023-09-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2023176992A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true