GENETIC ALGORITHM-BASED RESONANT CONVERTER DESIGN PARAMETER SELECTION METHOD

Disclosed is a genetic algorithm-based resonant converter design parameter selection method. According to the present invention, multi-target parameter solution vectors can be naturally obtained in an initial solution global solution set population space under a convergence condition by using a gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: CHEN, Jianbin, YANG, Chengyu, TANG, Shengzong, ZOU, Jianjun
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator CHEN, Jianbin
YANG, Chengyu
TANG, Shengzong
ZOU, Jianjun
description Disclosed is a genetic algorithm-based resonant converter design parameter selection method. According to the present invention, multi-target parameter solution vectors can be naturally obtained in an initial solution global solution set population space under a convergence condition by using a genetic algorithm; a BP neural network can adaptively obtain a population space φ* by means of the initial solution global solution set population space; by means of a proper hybridization operator and mutation operator, according to a roulette wheel selection operator, proper male parents and female parents are selected from these solution vectors having higher fitness, and genes of the male parents and the female parents are disassembled and recombined, so as to generate solution vectors in a sub-generation; then the fitness of these solution vectors in the sub-generation is calculated by means of a natural selection function; and generations of heredity is performed in the same way, and finally convergence is perfor
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2023029446A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2023029446A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2023029446A13</originalsourceid><addsrcrecordid>eNrjZPBxd_VzDfF0VnD0cfcP8gzx8NV1cgx2dVEIcg3293P0C1Fw9vcLcw0KcQ1ScHEN9nT3UwhwDHL0dQUJBLv6uDqHePr7KQD5Hv4uPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPtzfyMDI2MDI0sTEzNHQmDhVAI4YLxk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>GENETIC ALGORITHM-BASED RESONANT CONVERTER DESIGN PARAMETER SELECTION METHOD</title><source>esp@cenet</source><creator>CHEN, Jianbin ; YANG, Chengyu ; TANG, Shengzong ; ZOU, Jianjun</creator><creatorcontrib>CHEN, Jianbin ; YANG, Chengyu ; TANG, Shengzong ; ZOU, Jianjun</creatorcontrib><description>Disclosed is a genetic algorithm-based resonant converter design parameter selection method. According to the present invention, multi-target parameter solution vectors can be naturally obtained in an initial solution global solution set population space under a convergence condition by using a genetic algorithm; a BP neural network can adaptively obtain a population space φ* by means of the initial solution global solution set population space; by means of a proper hybridization operator and mutation operator, according to a roulette wheel selection operator, proper male parents and female parents are selected from these solution vectors having higher fitness, and genes of the male parents and the female parents are disassembled and recombined, so as to generate solution vectors in a sub-generation; then the fitness of these solution vectors in the sub-generation is calculated by means of a natural selection function; and generations of heredity is performed in the same way, and finally convergence is perfor</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2023</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230309&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023029446A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20230309&amp;DB=EPODOC&amp;CC=WO&amp;NR=2023029446A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>CHEN, Jianbin</creatorcontrib><creatorcontrib>YANG, Chengyu</creatorcontrib><creatorcontrib>TANG, Shengzong</creatorcontrib><creatorcontrib>ZOU, Jianjun</creatorcontrib><title>GENETIC ALGORITHM-BASED RESONANT CONVERTER DESIGN PARAMETER SELECTION METHOD</title><description>Disclosed is a genetic algorithm-based resonant converter design parameter selection method. According to the present invention, multi-target parameter solution vectors can be naturally obtained in an initial solution global solution set population space under a convergence condition by using a genetic algorithm; a BP neural network can adaptively obtain a population space φ* by means of the initial solution global solution set population space; by means of a proper hybridization operator and mutation operator, according to a roulette wheel selection operator, proper male parents and female parents are selected from these solution vectors having higher fitness, and genes of the male parents and the female parents are disassembled and recombined, so as to generate solution vectors in a sub-generation; then the fitness of these solution vectors in the sub-generation is calculated by means of a natural selection function; and generations of heredity is performed in the same way, and finally convergence is perfor</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2023</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPBxd_VzDfF0VnD0cfcP8gzx8NV1cgx2dVEIcg3293P0C1Fw9vcLcw0KcQ1ScHEN9nT3UwhwDHL0dQUJBLv6uDqHePr7KQD5Hv4uPAysaYk5xam8UJqbQdnNNcTZQze1ID8-tbggMTk1L7UkPtzfyMDI2MDI0sTEzNHQmDhVAI4YLxk</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>CHEN, Jianbin</creator><creator>YANG, Chengyu</creator><creator>TANG, Shengzong</creator><creator>ZOU, Jianjun</creator><scope>EVB</scope></search><sort><creationdate>20230309</creationdate><title>GENETIC ALGORITHM-BASED RESONANT CONVERTER DESIGN PARAMETER SELECTION METHOD</title><author>CHEN, Jianbin ; YANG, Chengyu ; TANG, Shengzong ; ZOU, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2023029446A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2023</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>CHEN, Jianbin</creatorcontrib><creatorcontrib>YANG, Chengyu</creatorcontrib><creatorcontrib>TANG, Shengzong</creatorcontrib><creatorcontrib>ZOU, Jianjun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>CHEN, Jianbin</au><au>YANG, Chengyu</au><au>TANG, Shengzong</au><au>ZOU, Jianjun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>GENETIC ALGORITHM-BASED RESONANT CONVERTER DESIGN PARAMETER SELECTION METHOD</title><date>2023-03-09</date><risdate>2023</risdate><abstract>Disclosed is a genetic algorithm-based resonant converter design parameter selection method. According to the present invention, multi-target parameter solution vectors can be naturally obtained in an initial solution global solution set population space under a convergence condition by using a genetic algorithm; a BP neural network can adaptively obtain a population space φ* by means of the initial solution global solution set population space; by means of a proper hybridization operator and mutation operator, according to a roulette wheel selection operator, proper male parents and female parents are selected from these solution vectors having higher fitness, and genes of the male parents and the female parents are disassembled and recombined, so as to generate solution vectors in a sub-generation; then the fitness of these solution vectors in the sub-generation is calculated by means of a natural selection function; and generations of heredity is performed in the same way, and finally convergence is perfor</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2023029446A1
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title GENETIC ALGORITHM-BASED RESONANT CONVERTER DESIGN PARAMETER SELECTION METHOD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=CHEN,%20Jianbin&rft.date=2023-03-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2023029446A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true