METHOD AND APPARATUS FOR TRAINING HEAT MAP GENERATION MODEL, AND ELECTRONIC DEVICE AND STORAGE MEDIUM
Provided in the present disclosure are a method and apparatus for training a heat map generation model, and an electronic device and a storage medium, in particular relating to the technical fields of deep learning, image recognition, computer vision, AI medical treatment, etc. The specific implemen...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | chi ; eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | WANG, Lei WANG, Zhaowei LIU, Jia YANG, Yehui SUN, Qinpei |
description | Provided in the present disclosure are a method and apparatus for training a heat map generation model, and an electronic device and a storage medium, in particular relating to the technical fields of deep learning, image recognition, computer vision, AI medical treatment, etc. The specific implementation solution is: acquiring an eye fundus image and a labeled heat map corresponding to the eye fundus image, wherein a heat value corresponding to a macular central fovea in the labeled heat map is different from heat values corresponding to the remaining pixel points, and the macular central fovea is a pixel point located in the eye fundus image; processing the eye fundus image by using an initial model, so as to acquire a predicted heat map corresponding to the eye fundus image; on the basis of the difference between a predicted heat value of any point in the predicted heat map and a labeled heat value of a corresponding point in the labeled heat map and the distance between the any point and the macular centr |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2022160676A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2022160676A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2022160676A13</originalsourceid><addsrcrecordid>eNqNi8EKgkAURd20iOofHrQtUANdP2ae44AzT8ZnLUViWkUJ9v8k0ge0uFw499xtEh1JzRrQL2lbDCh9BxUHkIDWW2-gJhRw2IIhT8tu2YNjTc1pfVFDSgJ7q0DT1SpaaScc0BA40rZ3-2TzGJ9zPPx6lxwrElWf4_Qe4jyN9_iKn-HGeZrnWZEWZYHZ5T_rCwShNSE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND APPARATUS FOR TRAINING HEAT MAP GENERATION MODEL, AND ELECTRONIC DEVICE AND STORAGE MEDIUM</title><source>esp@cenet</source><creator>WANG, Lei ; WANG, Zhaowei ; LIU, Jia ; YANG, Yehui ; SUN, Qinpei</creator><creatorcontrib>WANG, Lei ; WANG, Zhaowei ; LIU, Jia ; YANG, Yehui ; SUN, Qinpei</creatorcontrib><description>Provided in the present disclosure are a method and apparatus for training a heat map generation model, and an electronic device and a storage medium, in particular relating to the technical fields of deep learning, image recognition, computer vision, AI medical treatment, etc. The specific implementation solution is: acquiring an eye fundus image and a labeled heat map corresponding to the eye fundus image, wherein a heat value corresponding to a macular central fovea in the labeled heat map is different from heat values corresponding to the remaining pixel points, and the macular central fovea is a pixel point located in the eye fundus image; processing the eye fundus image by using an initial model, so as to acquire a predicted heat map corresponding to the eye fundus image; on the basis of the difference between a predicted heat value of any point in the predicted heat map and a labeled heat value of a corresponding point in the labeled heat map and the distance between the any point and the macular centr</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220804&DB=EPODOC&CC=WO&NR=2022160676A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20220804&DB=EPODOC&CC=WO&NR=2022160676A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>WANG, Lei</creatorcontrib><creatorcontrib>WANG, Zhaowei</creatorcontrib><creatorcontrib>LIU, Jia</creatorcontrib><creatorcontrib>YANG, Yehui</creatorcontrib><creatorcontrib>SUN, Qinpei</creatorcontrib><title>METHOD AND APPARATUS FOR TRAINING HEAT MAP GENERATION MODEL, AND ELECTRONIC DEVICE AND STORAGE MEDIUM</title><description>Provided in the present disclosure are a method and apparatus for training a heat map generation model, and an electronic device and a storage medium, in particular relating to the technical fields of deep learning, image recognition, computer vision, AI medical treatment, etc. The specific implementation solution is: acquiring an eye fundus image and a labeled heat map corresponding to the eye fundus image, wherein a heat value corresponding to a macular central fovea in the labeled heat map is different from heat values corresponding to the remaining pixel points, and the macular central fovea is a pixel point located in the eye fundus image; processing the eye fundus image by using an initial model, so as to acquire a predicted heat map corresponding to the eye fundus image; on the basis of the difference between a predicted heat value of any point in the predicted heat map and a labeled heat value of a corresponding point in the labeled heat map and the distance between the any point and the macular centr</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNi8EKgkAURd20iOofHrQtUANdP2ae44AzT8ZnLUViWkUJ9v8k0ge0uFw499xtEh1JzRrQL2lbDCh9BxUHkIDWW2-gJhRw2IIhT8tu2YNjTc1pfVFDSgJ7q0DT1SpaaScc0BA40rZ3-2TzGJ9zPPx6lxwrElWf4_Qe4jyN9_iKn-HGeZrnWZEWZYHZ5T_rCwShNSE</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>WANG, Lei</creator><creator>WANG, Zhaowei</creator><creator>LIU, Jia</creator><creator>YANG, Yehui</creator><creator>SUN, Qinpei</creator><scope>EVB</scope></search><sort><creationdate>20220804</creationdate><title>METHOD AND APPARATUS FOR TRAINING HEAT MAP GENERATION MODEL, AND ELECTRONIC DEVICE AND STORAGE MEDIUM</title><author>WANG, Lei ; WANG, Zhaowei ; LIU, Jia ; YANG, Yehui ; SUN, Qinpei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2022160676A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>WANG, Lei</creatorcontrib><creatorcontrib>WANG, Zhaowei</creatorcontrib><creatorcontrib>LIU, Jia</creatorcontrib><creatorcontrib>YANG, Yehui</creatorcontrib><creatorcontrib>SUN, Qinpei</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>WANG, Lei</au><au>WANG, Zhaowei</au><au>LIU, Jia</au><au>YANG, Yehui</au><au>SUN, Qinpei</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND APPARATUS FOR TRAINING HEAT MAP GENERATION MODEL, AND ELECTRONIC DEVICE AND STORAGE MEDIUM</title><date>2022-08-04</date><risdate>2022</risdate><abstract>Provided in the present disclosure are a method and apparatus for training a heat map generation model, and an electronic device and a storage medium, in particular relating to the technical fields of deep learning, image recognition, computer vision, AI medical treatment, etc. The specific implementation solution is: acquiring an eye fundus image and a labeled heat map corresponding to the eye fundus image, wherein a heat value corresponding to a macular central fovea in the labeled heat map is different from heat values corresponding to the remaining pixel points, and the macular central fovea is a pixel point located in the eye fundus image; processing the eye fundus image by using an initial model, so as to acquire a predicted heat map corresponding to the eye fundus image; on the basis of the difference between a predicted heat value of any point in the predicted heat map and a labeled heat value of a corresponding point in the labeled heat map and the distance between the any point and the macular centr</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | chi ; eng ; fre |
recordid | cdi_epo_espacenet_WO2022160676A1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | METHOD AND APPARATUS FOR TRAINING HEAT MAP GENERATION MODEL, AND ELECTRONIC DEVICE AND STORAGE MEDIUM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A17%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=WANG,%20Lei&rft.date=2022-08-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2022160676A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |