METHOD AND APPARATUS FOR QUANTIZING NEURAL NETWORK MODEL, AND METHOD AND APPARATUS FOR PROCESSING DATA

A method and apparatus for quantizing a neural network model, and a method and apparatus for processing data, which belong to the field of artificial intelligence. An original neural network model comprises a first operator, a second operator and a first operation module, the first operation module...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SUN, Fangxuan, LIAN, Shuo, CHANG, Jing, ZHOU, Jun, WANG, Chenxi
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SUN, Fangxuan
LIAN, Shuo
CHANG, Jing
ZHOU, Jun
WANG, Chenxi
description A method and apparatus for quantizing a neural network model, and a method and apparatus for processing data, which belong to the field of artificial intelligence. An original neural network model comprises a first operator, a second operator and a first operation module, the first operation module being used for performing operation on an output of the first operator and an output of the second operator. The method for quantizing a neural network model comprises: determining a data quantization parameter according to the range of first training input data of a first operator and the range of second training input data of a second operator; and determining a quantized neural network model, and the quantized neural network model respectively quantizing quantized first input data of the first operator and quantized second input data of the second operator by using the data quantization parameter. A quantized processing result of a first operator and a quantized processing result of a second operator can be dire
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2022088063A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2022088063A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2022088063A13</originalsourceid><addsrcrecordid>eNrjZEjzdQ3x8HdRcPQD4oAAxyDHkNBgBTf_IIXAUEe_EM8oTz93BT_X0CBHHyAVEu4f5K3g6-_i6qMD1oJTd0CQv7NrcDBIt4tjiCMPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkP9zcyMDIysLAwMDN2NDQmThUAeqs11Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>METHOD AND APPARATUS FOR QUANTIZING NEURAL NETWORK MODEL, AND METHOD AND APPARATUS FOR PROCESSING DATA</title><source>esp@cenet</source><creator>SUN, Fangxuan ; LIAN, Shuo ; CHANG, Jing ; ZHOU, Jun ; WANG, Chenxi</creator><creatorcontrib>SUN, Fangxuan ; LIAN, Shuo ; CHANG, Jing ; ZHOU, Jun ; WANG, Chenxi</creatorcontrib><description>A method and apparatus for quantizing a neural network model, and a method and apparatus for processing data, which belong to the field of artificial intelligence. An original neural network model comprises a first operator, a second operator and a first operation module, the first operation module being used for performing operation on an output of the first operator and an output of the second operator. The method for quantizing a neural network model comprises: determining a data quantization parameter according to the range of first training input data of a first operator and the range of second training input data of a second operator; and determining a quantized neural network model, and the quantized neural network model respectively quantizing quantized first input data of the first operator and quantized second input data of the second operator by using the data quantization parameter. A quantized processing result of a first operator and a quantized processing result of a second operator can be dire</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2022</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220505&amp;DB=EPODOC&amp;CC=WO&amp;NR=2022088063A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20220505&amp;DB=EPODOC&amp;CC=WO&amp;NR=2022088063A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SUN, Fangxuan</creatorcontrib><creatorcontrib>LIAN, Shuo</creatorcontrib><creatorcontrib>CHANG, Jing</creatorcontrib><creatorcontrib>ZHOU, Jun</creatorcontrib><creatorcontrib>WANG, Chenxi</creatorcontrib><title>METHOD AND APPARATUS FOR QUANTIZING NEURAL NETWORK MODEL, AND METHOD AND APPARATUS FOR PROCESSING DATA</title><description>A method and apparatus for quantizing a neural network model, and a method and apparatus for processing data, which belong to the field of artificial intelligence. An original neural network model comprises a first operator, a second operator and a first operation module, the first operation module being used for performing operation on an output of the first operator and an output of the second operator. The method for quantizing a neural network model comprises: determining a data quantization parameter according to the range of first training input data of a first operator and the range of second training input data of a second operator; and determining a quantized neural network model, and the quantized neural network model respectively quantizing quantized first input data of the first operator and quantized second input data of the second operator by using the data quantization parameter. A quantized processing result of a first operator and a quantized processing result of a second operator can be dire</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2022</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZEjzdQ3x8HdRcPQD4oAAxyDHkNBgBTf_IIXAUEe_EM8oTz93BT_X0CBHHyAVEu4f5K3g6-_i6qMD1oJTd0CQv7NrcDBIt4tjiCMPA2taYk5xKi-U5mZQdnMNcfbQTS3Ij08tLkhMTs1LLYkP9zcyMDIysLAwMDN2NDQmThUAeqs11Q</recordid><startdate>20220505</startdate><enddate>20220505</enddate><creator>SUN, Fangxuan</creator><creator>LIAN, Shuo</creator><creator>CHANG, Jing</creator><creator>ZHOU, Jun</creator><creator>WANG, Chenxi</creator><scope>EVB</scope></search><sort><creationdate>20220505</creationdate><title>METHOD AND APPARATUS FOR QUANTIZING NEURAL NETWORK MODEL, AND METHOD AND APPARATUS FOR PROCESSING DATA</title><author>SUN, Fangxuan ; LIAN, Shuo ; CHANG, Jing ; ZHOU, Jun ; WANG, Chenxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2022088063A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2022</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>SUN, Fangxuan</creatorcontrib><creatorcontrib>LIAN, Shuo</creatorcontrib><creatorcontrib>CHANG, Jing</creatorcontrib><creatorcontrib>ZHOU, Jun</creatorcontrib><creatorcontrib>WANG, Chenxi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SUN, Fangxuan</au><au>LIAN, Shuo</au><au>CHANG, Jing</au><au>ZHOU, Jun</au><au>WANG, Chenxi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>METHOD AND APPARATUS FOR QUANTIZING NEURAL NETWORK MODEL, AND METHOD AND APPARATUS FOR PROCESSING DATA</title><date>2022-05-05</date><risdate>2022</risdate><abstract>A method and apparatus for quantizing a neural network model, and a method and apparatus for processing data, which belong to the field of artificial intelligence. An original neural network model comprises a first operator, a second operator and a first operation module, the first operation module being used for performing operation on an output of the first operator and an output of the second operator. The method for quantizing a neural network model comprises: determining a data quantization parameter according to the range of first training input data of a first operator and the range of second training input data of a second operator; and determining a quantized neural network model, and the quantized neural network model respectively quantizing quantized first input data of the first operator and quantized second input data of the second operator by using the data quantization parameter. A quantized processing result of a first operator and a quantized processing result of a second operator can be dire</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2022088063A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title METHOD AND APPARATUS FOR QUANTIZING NEURAL NETWORK MODEL, AND METHOD AND APPARATUS FOR PROCESSING DATA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T21%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SUN,%20Fangxuan&rft.date=2022-05-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2022088063A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true