NEAREST-NEIGHBOR MULTI-GRANULARITY PROFIT METHOD FOR SYNERGETIC REDUCTION OF KNOWLEDGE OF MASSIVE ELECTRONIC HEALTH RECORDS

A nearest-neighbor multi-granularity profit method for the synergetic reduction of knowledge of massive electronic health records: first, dividing a data set of massive electronic health records into different multi-granularity evolutionary subpopulations on a Spark cloud platform; next, building a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DING, Weiping, FENG, Zhihao, CAO, Jinxin, JU, Hengrong, DING, Shuairong, CHEN, Senbo, REN, Longjie, LI, Ming, WAN, Jie, ZHAO, Lili, SUN, Ying, ZHANG, Yi
Format: Patent
Sprache:chi ; eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DING, Weiping
FENG, Zhihao
CAO, Jinxin
JU, Hengrong
DING, Shuairong
CHEN, Senbo
REN, Longjie
LI, Ming
WAN, Jie
ZHAO, Lili
SUN, Ying
ZHANG, Yi
description A nearest-neighbor multi-granularity profit method for the synergetic reduction of knowledge of massive electronic health records: first, dividing a data set of massive electronic health records into different multi-granularity evolutionary subpopulations on a Spark cloud platform; next, building a nearest neighbor-based multi-granularity profit model, and constructing a coordinated nearest neighbor vector in the nearest neighbor radius; then finding super elite shared nearest neighbor profit weights and a weight profit vector thereof, and implementing an adaptive dynamic adjustment strategy of a super elite weight profit matrix; and finally, finding a data knowledge synergetic reduction set of the massive electronic health records and core attributes thereof, and storing the knowledge reduction set of the electronic health records on the Spark cloud platform. The described method is able to efficiently obtain an incomplete and fuzzy data knowledge reduction set in the massive electronic health records, which
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2021169088A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2021169088A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2021169088A13</originalsourceid><addsrcrecordid>eNqNy8EKgkAUhWE3LaJ6h4HWghqELafx6gyNc-PONXElEtMqSrBdL59BD9Dq8MN3ltHbgSTwHDswlT4iibqxbOKKpGusJMOdOBOWhkUNrLEQ5Wx854AqYKMEQdEoNugEluLksLVQVPCNWnpvLiDAgmJCN2MN0rKePwqp8OtocRvuU9j8dhVtS2Cl4zA--zCNwzU8wqtvMUuyNN0fkjyX6e4_9QGSxzxL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>NEAREST-NEIGHBOR MULTI-GRANULARITY PROFIT METHOD FOR SYNERGETIC REDUCTION OF KNOWLEDGE OF MASSIVE ELECTRONIC HEALTH RECORDS</title><source>esp@cenet</source><creator>DING, Weiping ; FENG, Zhihao ; CAO, Jinxin ; JU, Hengrong ; DING, Shuairong ; CHEN, Senbo ; REN, Longjie ; LI, Ming ; WAN, Jie ; ZHAO, Lili ; SUN, Ying ; ZHANG, Yi</creator><creatorcontrib>DING, Weiping ; FENG, Zhihao ; CAO, Jinxin ; JU, Hengrong ; DING, Shuairong ; CHEN, Senbo ; REN, Longjie ; LI, Ming ; WAN, Jie ; ZHAO, Lili ; SUN, Ying ; ZHANG, Yi</creatorcontrib><description>A nearest-neighbor multi-granularity profit method for the synergetic reduction of knowledge of massive electronic health records: first, dividing a data set of massive electronic health records into different multi-granularity evolutionary subpopulations on a Spark cloud platform; next, building a nearest neighbor-based multi-granularity profit model, and constructing a coordinated nearest neighbor vector in the nearest neighbor radius; then finding super elite shared nearest neighbor profit weights and a weight profit vector thereof, and implementing an adaptive dynamic adjustment strategy of a super elite weight profit matrix; and finally, finding a data knowledge synergetic reduction set of the massive electronic health records and core attributes thereof, and storing the knowledge reduction set of the electronic health records on the Spark cloud platform. The described method is able to efficiently obtain an incomplete and fuzzy data knowledge reduction set in the massive electronic health records, which</description><language>chi ; eng ; fre</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; PHYSICS</subject><creationdate>2021</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210902&amp;DB=EPODOC&amp;CC=WO&amp;NR=2021169088A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20210902&amp;DB=EPODOC&amp;CC=WO&amp;NR=2021169088A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DING, Weiping</creatorcontrib><creatorcontrib>FENG, Zhihao</creatorcontrib><creatorcontrib>CAO, Jinxin</creatorcontrib><creatorcontrib>JU, Hengrong</creatorcontrib><creatorcontrib>DING, Shuairong</creatorcontrib><creatorcontrib>CHEN, Senbo</creatorcontrib><creatorcontrib>REN, Longjie</creatorcontrib><creatorcontrib>LI, Ming</creatorcontrib><creatorcontrib>WAN, Jie</creatorcontrib><creatorcontrib>ZHAO, Lili</creatorcontrib><creatorcontrib>SUN, Ying</creatorcontrib><creatorcontrib>ZHANG, Yi</creatorcontrib><title>NEAREST-NEIGHBOR MULTI-GRANULARITY PROFIT METHOD FOR SYNERGETIC REDUCTION OF KNOWLEDGE OF MASSIVE ELECTRONIC HEALTH RECORDS</title><description>A nearest-neighbor multi-granularity profit method for the synergetic reduction of knowledge of massive electronic health records: first, dividing a data set of massive electronic health records into different multi-granularity evolutionary subpopulations on a Spark cloud platform; next, building a nearest neighbor-based multi-granularity profit model, and constructing a coordinated nearest neighbor vector in the nearest neighbor radius; then finding super elite shared nearest neighbor profit weights and a weight profit vector thereof, and implementing an adaptive dynamic adjustment strategy of a super elite weight profit matrix; and finally, finding a data knowledge synergetic reduction set of the massive electronic health records and core attributes thereof, and storing the knowledge reduction set of the electronic health records on the Spark cloud platform. The described method is able to efficiently obtain an incomplete and fuzzy data knowledge reduction set in the massive electronic health records, which</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2021</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNy8EKgkAUhWE3LaJ6h4HWghqELafx6gyNc-PONXElEtMqSrBdL59BD9Dq8MN3ltHbgSTwHDswlT4iibqxbOKKpGusJMOdOBOWhkUNrLEQ5Wx854AqYKMEQdEoNugEluLksLVQVPCNWnpvLiDAgmJCN2MN0rKePwqp8OtocRvuU9j8dhVtS2Cl4zA--zCNwzU8wqtvMUuyNN0fkjyX6e4_9QGSxzxL</recordid><startdate>20210902</startdate><enddate>20210902</enddate><creator>DING, Weiping</creator><creator>FENG, Zhihao</creator><creator>CAO, Jinxin</creator><creator>JU, Hengrong</creator><creator>DING, Shuairong</creator><creator>CHEN, Senbo</creator><creator>REN, Longjie</creator><creator>LI, Ming</creator><creator>WAN, Jie</creator><creator>ZHAO, Lili</creator><creator>SUN, Ying</creator><creator>ZHANG, Yi</creator><scope>EVB</scope></search><sort><creationdate>20210902</creationdate><title>NEAREST-NEIGHBOR MULTI-GRANULARITY PROFIT METHOD FOR SYNERGETIC REDUCTION OF KNOWLEDGE OF MASSIVE ELECTRONIC HEALTH RECORDS</title><author>DING, Weiping ; FENG, Zhihao ; CAO, Jinxin ; JU, Hengrong ; DING, Shuairong ; CHEN, Senbo ; REN, Longjie ; LI, Ming ; WAN, Jie ; ZHAO, Lili ; SUN, Ying ; ZHANG, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2021169088A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>chi ; eng ; fre</language><creationdate>2021</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>DING, Weiping</creatorcontrib><creatorcontrib>FENG, Zhihao</creatorcontrib><creatorcontrib>CAO, Jinxin</creatorcontrib><creatorcontrib>JU, Hengrong</creatorcontrib><creatorcontrib>DING, Shuairong</creatorcontrib><creatorcontrib>CHEN, Senbo</creatorcontrib><creatorcontrib>REN, Longjie</creatorcontrib><creatorcontrib>LI, Ming</creatorcontrib><creatorcontrib>WAN, Jie</creatorcontrib><creatorcontrib>ZHAO, Lili</creatorcontrib><creatorcontrib>SUN, Ying</creatorcontrib><creatorcontrib>ZHANG, Yi</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DING, Weiping</au><au>FENG, Zhihao</au><au>CAO, Jinxin</au><au>JU, Hengrong</au><au>DING, Shuairong</au><au>CHEN, Senbo</au><au>REN, Longjie</au><au>LI, Ming</au><au>WAN, Jie</au><au>ZHAO, Lili</au><au>SUN, Ying</au><au>ZHANG, Yi</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>NEAREST-NEIGHBOR MULTI-GRANULARITY PROFIT METHOD FOR SYNERGETIC REDUCTION OF KNOWLEDGE OF MASSIVE ELECTRONIC HEALTH RECORDS</title><date>2021-09-02</date><risdate>2021</risdate><abstract>A nearest-neighbor multi-granularity profit method for the synergetic reduction of knowledge of massive electronic health records: first, dividing a data set of massive electronic health records into different multi-granularity evolutionary subpopulations on a Spark cloud platform; next, building a nearest neighbor-based multi-granularity profit model, and constructing a coordinated nearest neighbor vector in the nearest neighbor radius; then finding super elite shared nearest neighbor profit weights and a weight profit vector thereof, and implementing an adaptive dynamic adjustment strategy of a super elite weight profit matrix; and finally, finding a data knowledge synergetic reduction set of the massive electronic health records and core attributes thereof, and storing the knowledge reduction set of the electronic health records on the Spark cloud platform. The described method is able to efficiently obtain an incomplete and fuzzy data knowledge reduction set in the massive electronic health records, which</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language chi ; eng ; fre
recordid cdi_epo_espacenet_WO2021169088A1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATIONTECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING ORPROCESSING OF MEDICAL OR HEALTHCARE DATA
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
PHYSICS
title NEAREST-NEIGHBOR MULTI-GRANULARITY PROFIT METHOD FOR SYNERGETIC REDUCTION OF KNOWLEDGE OF MASSIVE ELECTRONIC HEALTH RECORDS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DING,%20Weiping&rft.date=2021-09-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2021169088A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true