IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS
A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of t...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng ; fre |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | MUELLER, Andrew J CLEARY, William T MUNDORFF, Jonna Partezana LIMBACK, Magnus COMSTOCK, Robert J |
description | A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.
L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2020223107A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2020223107A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2020223107A13</originalsourceid><addsrcrecordid>eNrjZPD09A0I8g9zdVFw9g8K8g_29PdTCHIN9gwOcfRzdlXwd1NwdHHxDPEMc_WJ1PV19At1c3QOCQ0Cqo_yDHL29_MM9VVw9PHxjwzmYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXx4f5GBkBoZGxoYO5oaEycKgA6-C6f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><source>esp@cenet</source><creator>MUELLER, Andrew J ; CLEARY, William T ; MUNDORFF, Jonna Partezana ; LIMBACK, Magnus ; COMSTOCK, Robert J</creator><creatorcontrib>MUELLER, Andrew J ; CLEARY, William T ; MUNDORFF, Jonna Partezana ; LIMBACK, Magnus ; COMSTOCK, Robert J</creatorcontrib><description>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.
L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.</description><language>eng ; fre</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; ALLOYS ; CASTING ; CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS ; CHEMISTRY ; CLADDING OR PLATING BY SOLDERING OR WELDING ; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING ; FERROUS OR NON-FERROUS ALLOYS ; MACHINE TOOLS ; MAKING METALLIC POWDER ; MANUFACTURE OF ARTICLES FROM METALLIC POWDER ; METAL-WORKING NOT OTHERWISE PROVIDED FOR ; METALLURGY ; NUCLEAR ENGINEERING ; NUCLEAR PHYSICS ; NUCLEAR REACTORS ; PERFORMING OPERATIONS ; PHYSICS ; POWDER METALLURGY ; SOLDERING OR UNSOLDERING ; TRANSPORTING ; TREATMENT OF ALLOYS OR NON-FERROUS METALS ; WELDING ; WORKING BY LASER BEAM ; WORKING METALLIC POWDER</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201105&DB=EPODOC&CC=WO&NR=2020223107A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20201105&DB=EPODOC&CC=WO&NR=2020223107A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MUELLER, Andrew J</creatorcontrib><creatorcontrib>CLEARY, William T</creatorcontrib><creatorcontrib>MUNDORFF, Jonna Partezana</creatorcontrib><creatorcontrib>LIMBACK, Magnus</creatorcontrib><creatorcontrib>COMSTOCK, Robert J</creatorcontrib><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><description>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.
L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>ALLOYS</subject><subject>CASTING</subject><subject>CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS</subject><subject>CHEMISTRY</subject><subject>CLADDING OR PLATING BY SOLDERING OR WELDING</subject><subject>CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>MACHINE TOOLS</subject><subject>MAKING METALLIC POWDER</subject><subject>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</subject><subject>METAL-WORKING NOT OTHERWISE PROVIDED FOR</subject><subject>METALLURGY</subject><subject>NUCLEAR ENGINEERING</subject><subject>NUCLEAR PHYSICS</subject><subject>NUCLEAR REACTORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>POWDER METALLURGY</subject><subject>SOLDERING OR UNSOLDERING</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><subject>WELDING</subject><subject>WORKING BY LASER BEAM</subject><subject>WORKING METALLIC POWDER</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD09A0I8g9zdVFw9g8K8g_29PdTCHIN9gwOcfRzdlXwd1NwdHHxDPEMc_WJ1PV19At1c3QOCQ0Cqo_yDHL29_MM9VVw9PHxjwzmYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXx4f5GBkBoZGxoYO5oaEycKgA6-C6f</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>MUELLER, Andrew J</creator><creator>CLEARY, William T</creator><creator>MUNDORFF, Jonna Partezana</creator><creator>LIMBACK, Magnus</creator><creator>COMSTOCK, Robert J</creator><scope>EVB</scope></search><sort><creationdate>20201105</creationdate><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><author>MUELLER, Andrew J ; CLEARY, William T ; MUNDORFF, Jonna Partezana ; LIMBACK, Magnus ; COMSTOCK, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2020223107A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2020</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>ALLOYS</topic><topic>CASTING</topic><topic>CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS</topic><topic>CHEMISTRY</topic><topic>CLADDING OR PLATING BY SOLDERING OR WELDING</topic><topic>CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>MACHINE TOOLS</topic><topic>MAKING METALLIC POWDER</topic><topic>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</topic><topic>METAL-WORKING NOT OTHERWISE PROVIDED FOR</topic><topic>METALLURGY</topic><topic>NUCLEAR ENGINEERING</topic><topic>NUCLEAR PHYSICS</topic><topic>NUCLEAR REACTORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>POWDER METALLURGY</topic><topic>SOLDERING OR UNSOLDERING</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><topic>WELDING</topic><topic>WORKING BY LASER BEAM</topic><topic>WORKING METALLIC POWDER</topic><toplevel>online_resources</toplevel><creatorcontrib>MUELLER, Andrew J</creatorcontrib><creatorcontrib>CLEARY, William T</creatorcontrib><creatorcontrib>MUNDORFF, Jonna Partezana</creatorcontrib><creatorcontrib>LIMBACK, Magnus</creatorcontrib><creatorcontrib>COMSTOCK, Robert J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MUELLER, Andrew J</au><au>CLEARY, William T</au><au>MUNDORFF, Jonna Partezana</au><au>LIMBACK, Magnus</au><au>COMSTOCK, Robert J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><date>2020-11-05</date><risdate>2020</risdate><abstract>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy.
L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng ; fre |
recordid | cdi_epo_espacenet_WO2020223107A1 |
source | esp@cenet |
subjects | ADDITIVE MANUFACTURING TECHNOLOGY ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ALLOYS CASTING CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS CHEMISTRY CLADDING OR PLATING BY SOLDERING OR WELDING CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING FERROUS OR NON-FERROUS ALLOYS MACHINE TOOLS MAKING METALLIC POWDER MANUFACTURE OF ARTICLES FROM METALLIC POWDER METAL-WORKING NOT OTHERWISE PROVIDED FOR METALLURGY NUCLEAR ENGINEERING NUCLEAR PHYSICS NUCLEAR REACTORS PERFORMING OPERATIONS PHYSICS POWDER METALLURGY SOLDERING OR UNSOLDERING TRANSPORTING TREATMENT OF ALLOYS OR NON-FERROUS METALS WELDING WORKING BY LASER BEAM WORKING METALLIC POWDER |
title | IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MUELLER,%20Andrew%20J&rft.date=2020-11-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2020223107A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |