IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS

A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MUELLER, Andrew J, CLEARY, William T, MUNDORFF, Jonna Partezana, LIMBACK, Magnus, COMSTOCK, Robert J
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MUELLER, Andrew J
CLEARY, William T
MUNDORFF, Jonna Partezana
LIMBACK, Magnus
COMSTOCK, Robert J
description A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy. L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO2020223107A1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO2020223107A1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO2020223107A13</originalsourceid><addsrcrecordid>eNrjZPD09A0I8g9zdVFw9g8K8g_29PdTCHIN9gwOcfRzdlXwd1NwdHHxDPEMc_WJ1PV19At1c3QOCQ0Cqo_yDHL29_MM9VVw9PHxjwzmYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXx4f5GBkBoZGxoYO5oaEycKgA6-C6f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><source>esp@cenet</source><creator>MUELLER, Andrew J ; CLEARY, William T ; MUNDORFF, Jonna Partezana ; LIMBACK, Magnus ; COMSTOCK, Robert J</creator><creatorcontrib>MUELLER, Andrew J ; CLEARY, William T ; MUNDORFF, Jonna Partezana ; LIMBACK, Magnus ; COMSTOCK, Robert J</creatorcontrib><description>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy. L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.</description><language>eng ; fre</language><subject>ADDITIVE MANUFACTURING TECHNOLOGY ; ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING ; ALLOYS ; CASTING ; CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS ; CHEMISTRY ; CLADDING OR PLATING BY SOLDERING OR WELDING ; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING ; FERROUS OR NON-FERROUS ALLOYS ; MACHINE TOOLS ; MAKING METALLIC POWDER ; MANUFACTURE OF ARTICLES FROM METALLIC POWDER ; METAL-WORKING NOT OTHERWISE PROVIDED FOR ; METALLURGY ; NUCLEAR ENGINEERING ; NUCLEAR PHYSICS ; NUCLEAR REACTORS ; PERFORMING OPERATIONS ; PHYSICS ; POWDER METALLURGY ; SOLDERING OR UNSOLDERING ; TRANSPORTING ; TREATMENT OF ALLOYS OR NON-FERROUS METALS ; WELDING ; WORKING BY LASER BEAM ; WORKING METALLIC POWDER</subject><creationdate>2020</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201105&amp;DB=EPODOC&amp;CC=WO&amp;NR=2020223107A1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20201105&amp;DB=EPODOC&amp;CC=WO&amp;NR=2020223107A1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MUELLER, Andrew J</creatorcontrib><creatorcontrib>CLEARY, William T</creatorcontrib><creatorcontrib>MUNDORFF, Jonna Partezana</creatorcontrib><creatorcontrib>LIMBACK, Magnus</creatorcontrib><creatorcontrib>COMSTOCK, Robert J</creatorcontrib><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><description>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy. L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.</description><subject>ADDITIVE MANUFACTURING TECHNOLOGY</subject><subject>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</subject><subject>ALLOYS</subject><subject>CASTING</subject><subject>CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS</subject><subject>CHEMISTRY</subject><subject>CLADDING OR PLATING BY SOLDERING OR WELDING</subject><subject>CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>MACHINE TOOLS</subject><subject>MAKING METALLIC POWDER</subject><subject>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</subject><subject>METAL-WORKING NOT OTHERWISE PROVIDED FOR</subject><subject>METALLURGY</subject><subject>NUCLEAR ENGINEERING</subject><subject>NUCLEAR PHYSICS</subject><subject>NUCLEAR REACTORS</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>POWDER METALLURGY</subject><subject>SOLDERING OR UNSOLDERING</subject><subject>TRANSPORTING</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><subject>WELDING</subject><subject>WORKING BY LASER BEAM</subject><subject>WORKING METALLIC POWDER</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2020</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPD09A0I8g9zdVFw9g8K8g_29PdTCHIN9gwOcfRzdlXwd1NwdHHxDPEMc_WJ1PV19At1c3QOCQ0Cqo_yDHL29_MM9VVw9PHxjwzmYWBNS8wpTuWF0twMym6uIc4euqkF-fGpxQWJyal5qSXx4f5GBkBoZGxoYO5oaEycKgA6-C6f</recordid><startdate>20201105</startdate><enddate>20201105</enddate><creator>MUELLER, Andrew J</creator><creator>CLEARY, William T</creator><creator>MUNDORFF, Jonna Partezana</creator><creator>LIMBACK, Magnus</creator><creator>COMSTOCK, Robert J</creator><scope>EVB</scope></search><sort><creationdate>20201105</creationdate><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><author>MUELLER, Andrew J ; CLEARY, William T ; MUNDORFF, Jonna Partezana ; LIMBACK, Magnus ; COMSTOCK, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO2020223107A13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2020</creationdate><topic>ADDITIVE MANUFACTURING TECHNOLOGY</topic><topic>ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING</topic><topic>ALLOYS</topic><topic>CASTING</topic><topic>CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS</topic><topic>CHEMISTRY</topic><topic>CLADDING OR PLATING BY SOLDERING OR WELDING</topic><topic>CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>MACHINE TOOLS</topic><topic>MAKING METALLIC POWDER</topic><topic>MANUFACTURE OF ARTICLES FROM METALLIC POWDER</topic><topic>METAL-WORKING NOT OTHERWISE PROVIDED FOR</topic><topic>METALLURGY</topic><topic>NUCLEAR ENGINEERING</topic><topic>NUCLEAR PHYSICS</topic><topic>NUCLEAR REACTORS</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>POWDER METALLURGY</topic><topic>SOLDERING OR UNSOLDERING</topic><topic>TRANSPORTING</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><topic>WELDING</topic><topic>WORKING BY LASER BEAM</topic><topic>WORKING METALLIC POWDER</topic><toplevel>online_resources</toplevel><creatorcontrib>MUELLER, Andrew J</creatorcontrib><creatorcontrib>CLEARY, William T</creatorcontrib><creatorcontrib>MUNDORFF, Jonna Partezana</creatorcontrib><creatorcontrib>LIMBACK, Magnus</creatorcontrib><creatorcontrib>COMSTOCK, Robert J</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MUELLER, Andrew J</au><au>CLEARY, William T</au><au>MUNDORFF, Jonna Partezana</au><au>LIMBACK, Magnus</au><au>COMSTOCK, Robert J</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS</title><date>2020-11-05</date><risdate>2020</risdate><abstract>A process is described that includes forming a metal alloy component having a pre-specified three dimensional geometry for use in a nuclear reactor by an additive manufacturing process followed by annealing the formed component at a first annealing temperature within the alpha temperature range of the phase diagram for the metal alloy. A second annealing step at a second annealing temperature lower than the first annealing temperature may be added. Alternatively, annealing may be at an annealing temperature in the alpha+beta temperature range of a phase diagram for the metal alloy, followed by a second anneal in the alpha temperature range of the phase diagram for the metal alloy. L'invention concerne un procédé qui comprend la formation d'un constituant d'alliage métallique ayant une géométrie tridimensionnelle pré-spécifiée, destiné à être utilisé dans un réacteur nucléaire, par un procédé de fabrication additive suivi du recuit du constituant formé à une première température de recuit au sein de la plage de température alpha du diagramme de phase pour l'alliage métallique. Une seconde étape de recuit à une seconde température de recuit inférieure à la première température de recuit peut être ajoutée. En variante, le recuit peut être effectué à une température de recuit dans la plage de température alpha+beta d'un diagramme de phase pour l'alliage métallique, suivi d'un second recuit dans la plage de température alpha du diagramme de phase pour l'alliage métallique.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre
recordid cdi_epo_espacenet_WO2020223107A1
source esp@cenet
subjects ADDITIVE MANUFACTURING TECHNOLOGY
ADDITIVE MANUFACTURING, i.e. MANUFACTURING OFTHREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVEAGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING,STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
ALLOYS
CASTING
CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS ANDNON-FERROUS ALLOYS
CHEMISTRY
CLADDING OR PLATING BY SOLDERING OR WELDING
CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING
FERROUS OR NON-FERROUS ALLOYS
MACHINE TOOLS
MAKING METALLIC POWDER
MANUFACTURE OF ARTICLES FROM METALLIC POWDER
METAL-WORKING NOT OTHERWISE PROVIDED FOR
METALLURGY
NUCLEAR ENGINEERING
NUCLEAR PHYSICS
NUCLEAR REACTORS
PERFORMING OPERATIONS
PHYSICS
POWDER METALLURGY
SOLDERING OR UNSOLDERING
TRANSPORTING
TREATMENT OF ALLOYS OR NON-FERROUS METALS
WELDING
WORKING BY LASER BEAM
WORKING METALLIC POWDER
title IMPROVED CORROSION RESISTANCE OF ADDITIVELY-MANUFACTURED ZIRCONIUM ALLOYS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MUELLER,%20Andrew%20J&rft.date=2020-11-05&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO2020223107A1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true