USE OF ELECTROSTATIC FIELDS TO ENHANCE SURFACE PLASMON RESONANCE SPECTROSCOPY

In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GEORGIADIS, ROSINA, M, HEATON, RICHARD, J. DI
Format: Patent
Sprache:eng ; fre
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GEORGIADIS, ROSINA, M
HEATON, RICHARD, J. DI
description In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interfa
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_WO02055993A2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WO02055993A2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_WO02055993A23</originalsourceid><addsrcrecordid>eNrjZPANDXZV8HdTcPVxdQ4J8g8OcQzxdFZw83T1cQlWCPFXcPXzcPRzdlUIDg1ycwTSAT6Owb7-fgpBrsH-fhCZAIhOZ_-ASB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh_ub2BkYGpqaWnsaGRMjBoA-Zsulw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>USE OF ELECTROSTATIC FIELDS TO ENHANCE SURFACE PLASMON RESONANCE SPECTROSCOPY</title><source>esp@cenet</source><creator>GEORGIADIS, ROSINA, M ; HEATON, RICHARD, J. DI</creator><creatorcontrib>GEORGIADIS, ROSINA, M ; HEATON, RICHARD, J. DI</creatorcontrib><description>In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. L'invention concerne la spectroscopie par résonance de plasmon de surface (SPR) optique in-situ , que l'on peut utiliser pour surveiller la cinétique d'hybridation pour des ADN non étiquetés dans des films d'acide nucléique monocouche captifs sur de l'or en présence d'un champ électrostatique appliqué. Le champ CC, qui renforce ou retarde l'hybridation, peut également dénaturer les duplexes d'ADN immobilisés sur une surface. La distinction entre des hybrides assortis et non assortis est réalisée par simple ajustement du potentiel d'électrodes. Bien que le champ électrique à l'interface soit extrêmement grand, les sondes thiol d'ADN simple brin restent liées et peuvent être réutilisées pour des réactions d'hybridation ultérieures sans perte d'efficacité. Seul des courants de charge capacitifs sont tirés; on évite des réactions d'oxydoréduction en maintenant le potentiel d'électrodes à l'or dans une zone idéalement polarisable. Du fait de changements induits par le potentiel au niveau de la forme de la courbe SPR, la courbe dans sa totalité est prise en compte plutôt que simplement le décalage au niveau du minimum de résonance. L'hybridation de brins d'ADN complémentaires est le principe sous-jacent de toutes les techniques fondées sur des jeux ordonnés de microdépôts pour l'analyse de variation d'ADN. L'invention concerne la question de savoir comment l'immobilisation de sonde sur les surfaces, plus précisément la densité de sonde, influence la cinétique de capture de cible à l'aide de la spectroscopie par résonance de plasmon de surface (SPR), un procédé optique sans étiquette in-situ . On régule la densité de sonde en faisant varier les conditions d'immobilisation, y compris la force ionique de la solution, le potentiel électrostatique interfacial, et si des oligonucléotides à simple brin ou à deux brins sont utilisés. Indépendamment de la stratégie d'immobilisation de sonde utilisée, les films d'ADN de densité de sonde égale présentent des rendements reproductibles ainsi que des cinétiques reproductibles d'hybridation de sonde/cible. Toutefois, l'hybridation est particulièrement fonction de la densité de sonde, tant au niveau du rendement de la formation duplex, qu'à celui de la cinétique de capture de cible. Les effets de la densité de sonde peuvent être pris en compte en ce qui concerne la variation observée au niveau des taux de capture de cible autrefois attribuée à des effets thermodynamiques.</description><edition>7</edition><language>eng ; fre</language><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES ; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES ; MEASURING ; NANOTECHNOLOGY ; PERFORMING OPERATIONS ; PHYSICS ; SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES ; TESTING ; TRANSPORTING</subject><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020718&amp;DB=EPODOC&amp;CC=WO&amp;NR=02055993A2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020718&amp;DB=EPODOC&amp;CC=WO&amp;NR=02055993A2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GEORGIADIS, ROSINA, M</creatorcontrib><creatorcontrib>HEATON, RICHARD, J. DI</creatorcontrib><title>USE OF ELECTROSTATIC FIELDS TO ENHANCE SURFACE PLASMON RESONANCE SPECTROSCOPY</title><description>In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. L'invention concerne la spectroscopie par résonance de plasmon de surface (SPR) optique in-situ , que l'on peut utiliser pour surveiller la cinétique d'hybridation pour des ADN non étiquetés dans des films d'acide nucléique monocouche captifs sur de l'or en présence d'un champ électrostatique appliqué. Le champ CC, qui renforce ou retarde l'hybridation, peut également dénaturer les duplexes d'ADN immobilisés sur une surface. La distinction entre des hybrides assortis et non assortis est réalisée par simple ajustement du potentiel d'électrodes. Bien que le champ électrique à l'interface soit extrêmement grand, les sondes thiol d'ADN simple brin restent liées et peuvent être réutilisées pour des réactions d'hybridation ultérieures sans perte d'efficacité. Seul des courants de charge capacitifs sont tirés; on évite des réactions d'oxydoréduction en maintenant le potentiel d'électrodes à l'or dans une zone idéalement polarisable. Du fait de changements induits par le potentiel au niveau de la forme de la courbe SPR, la courbe dans sa totalité est prise en compte plutôt que simplement le décalage au niveau du minimum de résonance. L'hybridation de brins d'ADN complémentaires est le principe sous-jacent de toutes les techniques fondées sur des jeux ordonnés de microdépôts pour l'analyse de variation d'ADN. L'invention concerne la question de savoir comment l'immobilisation de sonde sur les surfaces, plus précisément la densité de sonde, influence la cinétique de capture de cible à l'aide de la spectroscopie par résonance de plasmon de surface (SPR), un procédé optique sans étiquette in-situ . On régule la densité de sonde en faisant varier les conditions d'immobilisation, y compris la force ionique de la solution, le potentiel électrostatique interfacial, et si des oligonucléotides à simple brin ou à deux brins sont utilisés. Indépendamment de la stratégie d'immobilisation de sonde utilisée, les films d'ADN de densité de sonde égale présentent des rendements reproductibles ainsi que des cinétiques reproductibles d'hybridation de sonde/cible. Toutefois, l'hybridation est particulièrement fonction de la densité de sonde, tant au niveau du rendement de la formation duplex, qu'à celui de la cinétique de capture de cible. Les effets de la densité de sonde peuvent être pris en compte en ce qui concerne la variation observée au niveau des taux de capture de cible autrefois attribuée à des effets thermodynamiques.</description><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MANUFACTURE OR TREATMENT OF NANOSTRUCTURES</subject><subject>MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES</subject><subject>MEASURING</subject><subject>NANOTECHNOLOGY</subject><subject>PERFORMING OPERATIONS</subject><subject>PHYSICS</subject><subject>SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES</subject><subject>TESTING</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPANDXZV8HdTcPVxdQ4J8g8OcQzxdFZw83T1cQlWCPFXcPXzcPRzdlUIDg1ycwTSAT6Owb7-fgpBrsH-fhCZAIhOZ_-ASB4G1rTEnOJUXijNzaDo5hri7KGbWpAfn1pckJicmpdaEh_ub2BkYGpqaWnsaGRMjBoA-Zsulw</recordid><startdate>20020718</startdate><enddate>20020718</enddate><creator>GEORGIADIS, ROSINA, M</creator><creator>HEATON, RICHARD, J. DI</creator><scope>EVB</scope></search><sort><creationdate>20020718</creationdate><title>USE OF ELECTROSTATIC FIELDS TO ENHANCE SURFACE PLASMON RESONANCE SPECTROSCOPY</title><author>GEORGIADIS, ROSINA, M ; HEATON, RICHARD, J. DI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_WO02055993A23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng ; fre</language><creationdate>2002</creationdate><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MANUFACTURE OR TREATMENT OF NANOSTRUCTURES</topic><topic>MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES</topic><topic>MEASURING</topic><topic>NANOTECHNOLOGY</topic><topic>PERFORMING OPERATIONS</topic><topic>PHYSICS</topic><topic>SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES</topic><topic>TESTING</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GEORGIADIS, ROSINA, M</creatorcontrib><creatorcontrib>HEATON, RICHARD, J. DI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GEORGIADIS, ROSINA, M</au><au>HEATON, RICHARD, J. DI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>USE OF ELECTROSTATIC FIELDS TO ENHANCE SURFACE PLASMON RESONANCE SPECTROSCOPY</title><date>2002-07-18</date><risdate>2002</risdate><abstract>In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. In-situ optical surface plasmon resonance spectroscopy (SPR) can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The DC field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered ssDNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential induced changes in the shape fo the SPR curve, we account for the full curve rather than simply the shift in the resonance minimum. The hybridization of complementary strands of DNA is the underlying principle of all microarray-based techniques for analysis of DNA variation. In this paper, we study how probe immobilization at surfaces, specifically probe density, influences the kinetics of target capture using surface plasmon resonance (SPR) spectroscopy, an in-situ label-free optical method. Probe density is controlled by varying immobilization conditions, including solution ionic strength, interfacial electrostatic potential, and whether duplex or single stranded oligonucleotides are used. Independent of which probe immobilization strategy is used, we find that DNA films of equal probe density exhibit reproducible efficiencies and reproducible kinetics for probe/target hybridization. However, hybridization depends strongly on probe density in both the efficiency of duplex formation and the kinetics of target capture. We propose that probe density efrects may account for observed variation in target capture rates which have previously been attributed to thermodynamic effects. L'invention concerne la spectroscopie par résonance de plasmon de surface (SPR) optique in-situ , que l'on peut utiliser pour surveiller la cinétique d'hybridation pour des ADN non étiquetés dans des films d'acide nucléique monocouche captifs sur de l'or en présence d'un champ électrostatique appliqué. Le champ CC, qui renforce ou retarde l'hybridation, peut également dénaturer les duplexes d'ADN immobilisés sur une surface. La distinction entre des hybrides assortis et non assortis est réalisée par simple ajustement du potentiel d'électrodes. Bien que le champ électrique à l'interface soit extrêmement grand, les sondes thiol d'ADN simple brin restent liées et peuvent être réutilisées pour des réactions d'hybridation ultérieures sans perte d'efficacité. Seul des courants de charge capacitifs sont tirés; on évite des réactions d'oxydoréduction en maintenant le potentiel d'électrodes à l'or dans une zone idéalement polarisable. Du fait de changements induits par le potentiel au niveau de la forme de la courbe SPR, la courbe dans sa totalité est prise en compte plutôt que simplement le décalage au niveau du minimum de résonance. L'hybridation de brins d'ADN complémentaires est le principe sous-jacent de toutes les techniques fondées sur des jeux ordonnés de microdépôts pour l'analyse de variation d'ADN. L'invention concerne la question de savoir comment l'immobilisation de sonde sur les surfaces, plus précisément la densité de sonde, influence la cinétique de capture de cible à l'aide de la spectroscopie par résonance de plasmon de surface (SPR), un procédé optique sans étiquette in-situ . On régule la densité de sonde en faisant varier les conditions d'immobilisation, y compris la force ionique de la solution, le potentiel électrostatique interfacial, et si des oligonucléotides à simple brin ou à deux brins sont utilisés. Indépendamment de la stratégie d'immobilisation de sonde utilisée, les films d'ADN de densité de sonde égale présentent des rendements reproductibles ainsi que des cinétiques reproductibles d'hybridation de sonde/cible. Toutefois, l'hybridation est particulièrement fonction de la densité de sonde, tant au niveau du rendement de la formation duplex, qu'à celui de la cinétique de capture de cible. Les effets de la densité de sonde peuvent être pris en compte en ce qui concerne la variation observée au niveau des taux de capture de cible autrefois attribuée à des effets thermodynamiques.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng ; fre
recordid cdi_epo_espacenet_WO02055993A2
source esp@cenet
subjects INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES
MEASURING
NANOTECHNOLOGY
PERFORMING OPERATIONS
PHYSICS
SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES
TESTING
TRANSPORTING
title USE OF ELECTROSTATIC FIELDS TO ENHANCE SURFACE PLASMON RESONANCE SPECTROSCOPY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GEORGIADIS,%20ROSINA,%20M&rft.date=2002-07-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EWO02055993A2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true