External malware data item clustering and analysis

Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Cohen, David, Boortz, Julia, Sprague, Matthew, Fu, Bing Jie, Nepomnyashchiy, Ilya, Ma, Jason, Grossman, Jack, Smaliy, Alex, Thompson, James, Harris, Michael, Kross, Michael, Borochoff, Adam, Berler, Steven, Menon, Parvathy
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Cohen, David
Boortz, Julia
Sprague, Matthew
Fu, Bing Jie
Nepomnyashchiy, Ilya
Ma, Jason
Grossman, Jack
Smaliy, Alex
Thompson, James
Harris, Michael
Kross, Michael
Borochoff, Adam
Berler, Steven
Menon, Parvathy
description Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9965937B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9965937B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9965937B23</originalsourceid><addsrcrecordid>eNrjZDByrShJLcpLzFHITcwpTyxKVUhJLElUyCxJzVVIziktBkpm5qUrJOalAHFiTmVxZjEPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYkPDba0NDO1NDZ3MjImQgkAh6QsFw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>External malware data item clustering and analysis</title><source>esp@cenet</source><creator>Cohen, David ; Boortz, Julia ; Sprague, Matthew ; Fu, Bing Jie ; Nepomnyashchiy, Ilya ; Ma, Jason ; Grossman, Jack ; Smaliy, Alex ; Thompson, James ; Harris, Michael ; Kross, Michael ; Borochoff, Adam ; Berler, Steven ; Menon, Parvathy</creator><creatorcontrib>Cohen, David ; Boortz, Julia ; Sprague, Matthew ; Fu, Bing Jie ; Nepomnyashchiy, Ilya ; Ma, Jason ; Grossman, Jack ; Smaliy, Alex ; Thompson, James ; Harris, Michael ; Kross, Michael ; Borochoff, Adam ; Berler, Steven ; Menon, Parvathy</creatorcontrib><description>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</description><language>eng</language><subject>ALARM SYSTEMS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS ; TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180508&amp;DB=EPODOC&amp;CC=US&amp;NR=9965937B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180508&amp;DB=EPODOC&amp;CC=US&amp;NR=9965937B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Cohen, David</creatorcontrib><creatorcontrib>Boortz, Julia</creatorcontrib><creatorcontrib>Sprague, Matthew</creatorcontrib><creatorcontrib>Fu, Bing Jie</creatorcontrib><creatorcontrib>Nepomnyashchiy, Ilya</creatorcontrib><creatorcontrib>Ma, Jason</creatorcontrib><creatorcontrib>Grossman, Jack</creatorcontrib><creatorcontrib>Smaliy, Alex</creatorcontrib><creatorcontrib>Thompson, James</creatorcontrib><creatorcontrib>Harris, Michael</creatorcontrib><creatorcontrib>Kross, Michael</creatorcontrib><creatorcontrib>Borochoff, Adam</creatorcontrib><creatorcontrib>Berler, Steven</creatorcontrib><creatorcontrib>Menon, Parvathy</creatorcontrib><title>External malware data item clustering and analysis</title><description>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</description><subject>ALARM SYSTEMS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><subject>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDByrShJLcpLzFHITcwpTyxKVUhJLElUyCxJzVVIziktBkpm5qUrJOalAHFiTmVxZjEPA2taYk5xKi-U5mZQcHMNcfbQTS3Ij08tLkhMTs1LLYkPDba0NDO1NDZ3MjImQgkAh6QsFw</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Cohen, David</creator><creator>Boortz, Julia</creator><creator>Sprague, Matthew</creator><creator>Fu, Bing Jie</creator><creator>Nepomnyashchiy, Ilya</creator><creator>Ma, Jason</creator><creator>Grossman, Jack</creator><creator>Smaliy, Alex</creator><creator>Thompson, James</creator><creator>Harris, Michael</creator><creator>Kross, Michael</creator><creator>Borochoff, Adam</creator><creator>Berler, Steven</creator><creator>Menon, Parvathy</creator><scope>EVB</scope></search><sort><creationdate>20180508</creationdate><title>External malware data item clustering and analysis</title><author>Cohen, David ; Boortz, Julia ; Sprague, Matthew ; Fu, Bing Jie ; Nepomnyashchiy, Ilya ; Ma, Jason ; Grossman, Jack ; Smaliy, Alex ; Thompson, James ; Harris, Michael ; Kross, Michael ; Borochoff, Adam ; Berler, Steven ; Menon, Parvathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9965937B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ALARM SYSTEMS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><topic>TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION</topic><toplevel>online_resources</toplevel><creatorcontrib>Cohen, David</creatorcontrib><creatorcontrib>Boortz, Julia</creatorcontrib><creatorcontrib>Sprague, Matthew</creatorcontrib><creatorcontrib>Fu, Bing Jie</creatorcontrib><creatorcontrib>Nepomnyashchiy, Ilya</creatorcontrib><creatorcontrib>Ma, Jason</creatorcontrib><creatorcontrib>Grossman, Jack</creatorcontrib><creatorcontrib>Smaliy, Alex</creatorcontrib><creatorcontrib>Thompson, James</creatorcontrib><creatorcontrib>Harris, Michael</creatorcontrib><creatorcontrib>Kross, Michael</creatorcontrib><creatorcontrib>Borochoff, Adam</creatorcontrib><creatorcontrib>Berler, Steven</creatorcontrib><creatorcontrib>Menon, Parvathy</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cohen, David</au><au>Boortz, Julia</au><au>Sprague, Matthew</au><au>Fu, Bing Jie</au><au>Nepomnyashchiy, Ilya</au><au>Ma, Jason</au><au>Grossman, Jack</au><au>Smaliy, Alex</au><au>Thompson, James</au><au>Harris, Michael</au><au>Kross, Michael</au><au>Borochoff, Adam</au><au>Berler, Steven</au><au>Menon, Parvathy</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>External malware data item clustering and analysis</title><date>2018-05-08</date><risdate>2018</risdate><abstract>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9965937B2
source esp@cenet
subjects ALARM SYSTEMS
CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
ORDER TELEGRAPHS
PHYSICS
SIGNALLING
SIGNALLING OR CALLING SYSTEMS
TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHICCOMMUNICATION
title External malware data item clustering and analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Cohen,%20David&rft.date=2018-05-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9965937B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true