Systems and methods for identifying anomalous data in large structured data sets and querying the data sets

The technology disclosed relates to automatic generation of tuples from a record set for outlier analysis. Applying this new technology, user need not specify which 1-tuples to combine into n-tuples. The tuples are generated from structured records organized into features (that also could be fields,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Georgiev, Stanislav, Fuchs, Matthew
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Georgiev, Stanislav
Fuchs, Matthew
description The technology disclosed relates to automatic generation of tuples from a record set for outlier analysis. Applying this new technology, user need not specify which 1-tuples to combine into n-tuples. The tuples are generated from structured records organized into features (that also could be fields, objects or attributes.) Tuples are generated from combinations of feature values in the records. Thresholding is applied to manage the number of tuples generated. The technology disclosed further relates to indexing and searching high dimensional tuple spaces in a computer-implemented system.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9965524B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9965524B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9965524B23</originalsourceid><addsrcrecordid>eNqNzLEOgkAQBFAaC6P-w_6ADYoJrUZjj9Zkww1wkbvD272Cv9eIia3VFG9mltmjmkThhNgbctA-GKE2RLIGXm07Wd-9LTgeQhIyrEzW08CxA4nG1GiKMDMIdD56JsTPUnv8aJ0tWh4Em2-uMrqcb6frFmOoISM38ND6XpXloSjy_THf_VF5AYNYQW4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Systems and methods for identifying anomalous data in large structured data sets and querying the data sets</title><source>esp@cenet</source><creator>Georgiev, Stanislav ; Fuchs, Matthew</creator><creatorcontrib>Georgiev, Stanislav ; Fuchs, Matthew</creatorcontrib><description>The technology disclosed relates to automatic generation of tuples from a record set for outlier analysis. Applying this new technology, user need not specify which 1-tuples to combine into n-tuples. The tuples are generated from structured records organized into features (that also could be fields, objects or attributes.) Tuples are generated from combinations of feature values in the records. Thresholding is applied to manage the number of tuples generated. The technology disclosed further relates to indexing and searching high dimensional tuple spaces in a computer-implemented system.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRIC DIGITAL DATA PROCESSING ; ELECTRICITY ; PHYSICS ; TRANSMISSION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180508&amp;DB=EPODOC&amp;CC=US&amp;NR=9965524B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180508&amp;DB=EPODOC&amp;CC=US&amp;NR=9965524B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Georgiev, Stanislav</creatorcontrib><creatorcontrib>Fuchs, Matthew</creatorcontrib><title>Systems and methods for identifying anomalous data in large structured data sets and querying the data sets</title><description>The technology disclosed relates to automatic generation of tuples from a record set for outlier analysis. Applying this new technology, user need not specify which 1-tuples to combine into n-tuples. The tuples are generated from structured records organized into features (that also could be fields, objects or attributes.) Tuples are generated from combinations of feature values in the records. Thresholding is applied to manage the number of tuples generated. The technology disclosed further relates to indexing and searching high dimensional tuple spaces in a computer-implemented system.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>ELECTRICITY</subject><subject>PHYSICS</subject><subject>TRANSMISSION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNzLEOgkAQBFAaC6P-w_6ADYoJrUZjj9Zkww1wkbvD272Cv9eIia3VFG9mltmjmkThhNgbctA-GKE2RLIGXm07Wd-9LTgeQhIyrEzW08CxA4nG1GiKMDMIdD56JsTPUnv8aJ0tWh4Em2-uMrqcb6frFmOoISM38ND6XpXloSjy_THf_VF5AYNYQW4</recordid><startdate>20180508</startdate><enddate>20180508</enddate><creator>Georgiev, Stanislav</creator><creator>Fuchs, Matthew</creator><scope>EVB</scope></search><sort><creationdate>20180508</creationdate><title>Systems and methods for identifying anomalous data in large structured data sets and querying the data sets</title><author>Georgiev, Stanislav ; Fuchs, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9965524B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>ELECTRICITY</topic><topic>PHYSICS</topic><topic>TRANSMISSION</topic><toplevel>online_resources</toplevel><creatorcontrib>Georgiev, Stanislav</creatorcontrib><creatorcontrib>Fuchs, Matthew</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgiev, Stanislav</au><au>Fuchs, Matthew</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Systems and methods for identifying anomalous data in large structured data sets and querying the data sets</title><date>2018-05-08</date><risdate>2018</risdate><abstract>The technology disclosed relates to automatic generation of tuples from a record set for outlier analysis. Applying this new technology, user need not specify which 1-tuples to combine into n-tuples. The tuples are generated from structured records organized into features (that also could be fields, objects or attributes.) Tuples are generated from combinations of feature values in the records. Thresholding is applied to manage the number of tuples generated. The technology disclosed further relates to indexing and searching high dimensional tuple spaces in a computer-implemented system.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9965524B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRIC DIGITAL DATA PROCESSING
ELECTRICITY
PHYSICS
TRANSMISSION
title Systems and methods for identifying anomalous data in large structured data sets and querying the data sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A42%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Georgiev,%20Stanislav&rft.date=2018-05-08&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9965524B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true