Pronunciation learning through correction logs

A new pronunciation learning system for dynamically learning new pronunciations assisted by user correction logs. The user correction logs provide a record of speech recognition events and subsequent user behavior that implicitly confirms or rejects the recognition result and/or shows the user'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ozertem, Umut, Parthasarathy, Sarangarajan, Kibre, Nicholas, Al Bawab, Ziad
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Ozertem, Umut
Parthasarathy, Sarangarajan
Kibre, Nicholas
Al Bawab, Ziad
description A new pronunciation learning system for dynamically learning new pronunciations assisted by user correction logs. The user correction logs provide a record of speech recognition events and subsequent user behavior that implicitly confirms or rejects the recognition result and/or shows the user's intended words by via subsequent input. The system analyzes the correction logs and distills them down to a set of words which lack acceptable pronunciations. Hypothetical pronunciations, constrained by spelling and other linguistic knowledge, are generated for each of the words. Offline recognition determines the hypothetical pronunciations with a good acoustical match to the audio data likely to contain the words. The matching pronunciations are aggregated and adjudicated to select new pronunciations for the words to improve general or personalized recognition models.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9947317B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9947317B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9947317B23</originalsourceid><addsrcrecordid>eNrjZNALKMrPK81LzkwsyczPU8hJTSzKy8xLVyjJKMovTc9QSM4vKkpNhsjlpxfzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GBLSxNzY0NzJyNjIpQAAABAKx4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Pronunciation learning through correction logs</title><source>esp@cenet</source><creator>Ozertem, Umut ; Parthasarathy, Sarangarajan ; Kibre, Nicholas ; Al Bawab, Ziad</creator><creatorcontrib>Ozertem, Umut ; Parthasarathy, Sarangarajan ; Kibre, Nicholas ; Al Bawab, Ziad</creatorcontrib><description>A new pronunciation learning system for dynamically learning new pronunciations assisted by user correction logs. The user correction logs provide a record of speech recognition events and subsequent user behavior that implicitly confirms or rejects the recognition result and/or shows the user's intended words by via subsequent input. The system analyzes the correction logs and distills them down to a set of words which lack acceptable pronunciations. Hypothetical pronunciations, constrained by spelling and other linguistic knowledge, are generated for each of the words. Offline recognition determines the hypothetical pronunciations with a good acoustical match to the audio data likely to contain the words. The matching pronunciations are aggregated and adjudicated to select new pronunciations for the words to improve general or personalized recognition models.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180417&amp;DB=EPODOC&amp;CC=US&amp;NR=9947317B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180417&amp;DB=EPODOC&amp;CC=US&amp;NR=9947317B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ozertem, Umut</creatorcontrib><creatorcontrib>Parthasarathy, Sarangarajan</creatorcontrib><creatorcontrib>Kibre, Nicholas</creatorcontrib><creatorcontrib>Al Bawab, Ziad</creatorcontrib><title>Pronunciation learning through correction logs</title><description>A new pronunciation learning system for dynamically learning new pronunciations assisted by user correction logs. The user correction logs provide a record of speech recognition events and subsequent user behavior that implicitly confirms or rejects the recognition result and/or shows the user's intended words by via subsequent input. The system analyzes the correction logs and distills them down to a set of words which lack acceptable pronunciations. Hypothetical pronunciations, constrained by spelling and other linguistic knowledge, are generated for each of the words. Offline recognition determines the hypothetical pronunciations with a good acoustical match to the audio data likely to contain the words. The matching pronunciations are aggregated and adjudicated to select new pronunciations for the words to improve general or personalized recognition models.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNALKMrPK81LzkwsyczPU8hJTSzKy8xLVyjJKMovTc9QSM4vKkpNhsjlpxfzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GBLSxNzY0NzJyNjIpQAAABAKx4</recordid><startdate>20180417</startdate><enddate>20180417</enddate><creator>Ozertem, Umut</creator><creator>Parthasarathy, Sarangarajan</creator><creator>Kibre, Nicholas</creator><creator>Al Bawab, Ziad</creator><scope>EVB</scope></search><sort><creationdate>20180417</creationdate><title>Pronunciation learning through correction logs</title><author>Ozertem, Umut ; Parthasarathy, Sarangarajan ; Kibre, Nicholas ; Al Bawab, Ziad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9947317B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Ozertem, Umut</creatorcontrib><creatorcontrib>Parthasarathy, Sarangarajan</creatorcontrib><creatorcontrib>Kibre, Nicholas</creatorcontrib><creatorcontrib>Al Bawab, Ziad</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ozertem, Umut</au><au>Parthasarathy, Sarangarajan</au><au>Kibre, Nicholas</au><au>Al Bawab, Ziad</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Pronunciation learning through correction logs</title><date>2018-04-17</date><risdate>2018</risdate><abstract>A new pronunciation learning system for dynamically learning new pronunciations assisted by user correction logs. The user correction logs provide a record of speech recognition events and subsequent user behavior that implicitly confirms or rejects the recognition result and/or shows the user's intended words by via subsequent input. The system analyzes the correction logs and distills them down to a set of words which lack acceptable pronunciations. Hypothetical pronunciations, constrained by spelling and other linguistic knowledge, are generated for each of the words. Offline recognition determines the hypothetical pronunciations with a good acoustical match to the audio data likely to contain the words. The matching pronunciations are aggregated and adjudicated to select new pronunciations for the words to improve general or personalized recognition models.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9947317B2
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Pronunciation learning through correction logs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Ozertem,%20Umut&rft.date=2018-04-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9947317B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true