Electrodeposition system and method incorporating an anode having a back side capacitive element
Disclosed are an electrodeposition system and method with an anode assembly comprising a capacitor comprising a first conductive plate (i.e., an anode) with a frontside having a surface exposed to a plating solution, a second conductive plate on a backside of the first conductive plate, and a dielec...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Stahl Jürg Arvin Charles L |
description | Disclosed are an electrodeposition system and method with an anode assembly comprising a capacitor comprising a first conductive plate (i.e., an anode) with a frontside having a surface exposed to a plating solution, a second conductive plate on a backside of the first conductive plate, and a dielectric layer between the two conductive plates. During a non-plating mode, a power source, having positive and negative terminals connected to the first and second conductive plates, respectively, is turned on, thereby polarizing the first conductive plate (i.e., the anode) relative to the second conductive plate to prevent degradation of the anode and/or plating solution. During an active plating mode, another power source, having positive and negative terminals connected to the first conductive plate (i.e., the anode) and a cathode, respectively, is turned on, thereby polarizing the anode relative to the cathode in order to deposit a plated layer on a workpiece. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9863051B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9863051B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9863051B23</originalsourceid><addsrcrecordid>eNqNTUsKAjEM7caFqHfIBQR1UHSrjLhX12Nso1PsjyYMeHuDeAAh8HjfjM2tDWSlZkclsxefE_CbhSJgchBJ-uzAJ5tryRXFp6caelqAHocvhzvaF7BXyWJBqzMDAQWKlGRqRg8MTLMfTgwc28vhNNeHHbHGKZF01_Nuu2kW6-V-1fwR-QCVgz1q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Electrodeposition system and method incorporating an anode having a back side capacitive element</title><source>esp@cenet</source><creator>Stahl Jürg ; Arvin Charles L</creator><creatorcontrib>Stahl Jürg ; Arvin Charles L</creatorcontrib><description>Disclosed are an electrodeposition system and method with an anode assembly comprising a capacitor comprising a first conductive plate (i.e., an anode) with a frontside having a surface exposed to a plating solution, a second conductive plate on a backside of the first conductive plate, and a dielectric layer between the two conductive plates. During a non-plating mode, a power source, having positive and negative terminals connected to the first and second conductive plates, respectively, is turned on, thereby polarizing the first conductive plate (i.e., the anode) relative to the second conductive plate to prevent degradation of the anode and/or plating solution. During an active plating mode, another power source, having positive and negative terminals connected to the first conductive plate (i.e., the anode) and a cathode, respectively, is turned on, thereby polarizing the anode relative to the cathode in order to deposit a plated layer on a workpiece.</description><language>eng</language><subject>APPARATUS THEREFOR ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTROFORMING ; ELECTROLYTIC OR ELECTROPHORETIC PROCESSES ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 ; NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE ; PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180109&DB=EPODOC&CC=US&NR=9863051B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20180109&DB=EPODOC&CC=US&NR=9863051B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Stahl Jürg</creatorcontrib><creatorcontrib>Arvin Charles L</creatorcontrib><title>Electrodeposition system and method incorporating an anode having a back side capacitive element</title><description>Disclosed are an electrodeposition system and method with an anode assembly comprising a capacitor comprising a first conductive plate (i.e., an anode) with a frontside having a surface exposed to a plating solution, a second conductive plate on a backside of the first conductive plate, and a dielectric layer between the two conductive plates. During a non-plating mode, a power source, having positive and negative terminals connected to the first and second conductive plates, respectively, is turned on, thereby polarizing the first conductive plate (i.e., the anode) relative to the second conductive plate to prevent degradation of the anode and/or plating solution. During an active plating mode, another power source, having positive and negative terminals connected to the first conductive plate (i.e., the anode) and a cathode, respectively, is turned on, thereby polarizing the anode relative to the cathode in order to deposit a plated layer on a workpiece.</description><subject>APPARATUS THEREFOR</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTROFORMING</subject><subject>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</subject><subject>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</subject><subject>PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNTUsKAjEM7caFqHfIBQR1UHSrjLhX12Nso1PsjyYMeHuDeAAh8HjfjM2tDWSlZkclsxefE_CbhSJgchBJ-uzAJ5tryRXFp6caelqAHocvhzvaF7BXyWJBqzMDAQWKlGRqRg8MTLMfTgwc28vhNNeHHbHGKZF01_Nuu2kW6-V-1fwR-QCVgz1q</recordid><startdate>20180109</startdate><enddate>20180109</enddate><creator>Stahl Jürg</creator><creator>Arvin Charles L</creator><scope>EVB</scope></search><sort><creationdate>20180109</creationdate><title>Electrodeposition system and method incorporating an anode having a back side capacitive element</title><author>Stahl Jürg ; Arvin Charles L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9863051B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>APPARATUS THEREFOR</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTROFORMING</topic><topic>ELECTROLYTIC OR ELECTROPHORETIC PROCESSES</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25</topic><topic>NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE</topic><topic>PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS</topic><toplevel>online_resources</toplevel><creatorcontrib>Stahl Jürg</creatorcontrib><creatorcontrib>Arvin Charles L</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Stahl Jürg</au><au>Arvin Charles L</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Electrodeposition system and method incorporating an anode having a back side capacitive element</title><date>2018-01-09</date><risdate>2018</risdate><abstract>Disclosed are an electrodeposition system and method with an anode assembly comprising a capacitor comprising a first conductive plate (i.e., an anode) with a frontside having a surface exposed to a plating solution, a second conductive plate on a backside of the first conductive plate, and a dielectric layer between the two conductive plates. During a non-plating mode, a power source, having positive and negative terminals connected to the first and second conductive plates, respectively, is turned on, thereby polarizing the first conductive plate (i.e., the anode) relative to the second conductive plate to prevent degradation of the anode and/or plating solution. During an active plating mode, another power source, having positive and negative terminals connected to the first conductive plate (i.e., the anode) and a cathode, respectively, is turned on, thereby polarizing the anode relative to the cathode in order to deposit a plated layer on a workpiece.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9863051B2 |
source | esp@cenet |
subjects | APPARATUS THEREFOR CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTROFORMING ELECTROLYTIC OR ELECTROPHORETIC PROCESSES INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLICMATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASSC23 AND AT LEAST ONEPROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25 NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTIONOF COATINGS |
title | Electrodeposition system and method incorporating an anode having a back side capacitive element |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Stahl%20J%C3%BCrg&rft.date=2018-01-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9863051B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |