Dynamic adaptation of language models and semantic tracking for automatic speech recognition

Generally, this disclosure provides systems, devices, methods and computer readable media for adaptation of language models and semantic tracking to improve automatic speech recognition (ASR). A system for recognizing phrases of speech from a conversation may include an ASR circuit configured to tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pereg Oren, Wasserblat Moshe, Taite Shahar, Rider Tomer, Assayag Michel, Sivak Alexander
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Pereg Oren
Wasserblat Moshe
Taite Shahar
Rider Tomer
Assayag Michel
Sivak Alexander
description Generally, this disclosure provides systems, devices, methods and computer readable media for adaptation of language models and semantic tracking to improve automatic speech recognition (ASR). A system for recognizing phrases of speech from a conversation may include an ASR circuit configured to transcribe a user's speech to a first estimated text sequence, based on a generalized language model. The system may also include a language model matching circuit configured to analyze the first estimated text sequence to determine a context and to select a personalized language model (PLM), from a plurality of PLMs, based on that context. The ASR circuit may further be configured to re-transcribe the speech based on the selected PLM to generate a lattice of paths of estimated text sequences, wherein each of the paths of estimated text sequences comprise one or more words and an acoustic score associated with each of the words.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9858923B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9858923B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9858923B23</originalsourceid><addsrcrecordid>eNqNjM0KwjAQBnvxIOo77At4aRHaq394V29C-Ug2MdjshiY9-PZa8AE8DQzDLKvH8S2IwRAsUkEJKqSOBoif4JmiWh4yQSxljpDyTcsI8wriyelImIpGzDonZvOkkY16CfNpXS0chsybH1cVnU-3w2XLSXvOCYaFS3-_du2u7epmXzd_JB9mQTwV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dynamic adaptation of language models and semantic tracking for automatic speech recognition</title><source>esp@cenet</source><creator>Pereg Oren ; Wasserblat Moshe ; Taite Shahar ; Rider Tomer ; Assayag Michel ; Sivak Alexander</creator><creatorcontrib>Pereg Oren ; Wasserblat Moshe ; Taite Shahar ; Rider Tomer ; Assayag Michel ; Sivak Alexander</creatorcontrib><description>Generally, this disclosure provides systems, devices, methods and computer readable media for adaptation of language models and semantic tracking to improve automatic speech recognition (ASR). A system for recognizing phrases of speech from a conversation may include an ASR circuit configured to transcribe a user's speech to a first estimated text sequence, based on a generalized language model. The system may also include a language model matching circuit configured to analyze the first estimated text sequence to determine a context and to select a personalized language model (PLM), from a plurality of PLMs, based on that context. The ASR circuit may further be configured to re-transcribe the speech based on the selected PLM to generate a lattice of paths of estimated text sequences, wherein each of the paths of estimated text sequences comprise one or more words and an acoustic score associated with each of the words.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180102&amp;DB=EPODOC&amp;CC=US&amp;NR=9858923B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180102&amp;DB=EPODOC&amp;CC=US&amp;NR=9858923B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Pereg Oren</creatorcontrib><creatorcontrib>Wasserblat Moshe</creatorcontrib><creatorcontrib>Taite Shahar</creatorcontrib><creatorcontrib>Rider Tomer</creatorcontrib><creatorcontrib>Assayag Michel</creatorcontrib><creatorcontrib>Sivak Alexander</creatorcontrib><title>Dynamic adaptation of language models and semantic tracking for automatic speech recognition</title><description>Generally, this disclosure provides systems, devices, methods and computer readable media for adaptation of language models and semantic tracking to improve automatic speech recognition (ASR). A system for recognizing phrases of speech from a conversation may include an ASR circuit configured to transcribe a user's speech to a first estimated text sequence, based on a generalized language model. The system may also include a language model matching circuit configured to analyze the first estimated text sequence to determine a context and to select a personalized language model (PLM), from a plurality of PLMs, based on that context. The ASR circuit may further be configured to re-transcribe the speech based on the selected PLM to generate a lattice of paths of estimated text sequences, wherein each of the paths of estimated text sequences comprise one or more words and an acoustic score associated with each of the words.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjM0KwjAQBnvxIOo77At4aRHaq394V29C-Ug2MdjshiY9-PZa8AE8DQzDLKvH8S2IwRAsUkEJKqSOBoif4JmiWh4yQSxljpDyTcsI8wriyelImIpGzDonZvOkkY16CfNpXS0chsybH1cVnU-3w2XLSXvOCYaFS3-_du2u7epmXzd_JB9mQTwV</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Pereg Oren</creator><creator>Wasserblat Moshe</creator><creator>Taite Shahar</creator><creator>Rider Tomer</creator><creator>Assayag Michel</creator><creator>Sivak Alexander</creator><scope>EVB</scope></search><sort><creationdate>20180102</creationdate><title>Dynamic adaptation of language models and semantic tracking for automatic speech recognition</title><author>Pereg Oren ; Wasserblat Moshe ; Taite Shahar ; Rider Tomer ; Assayag Michel ; Sivak Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9858923B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Pereg Oren</creatorcontrib><creatorcontrib>Wasserblat Moshe</creatorcontrib><creatorcontrib>Taite Shahar</creatorcontrib><creatorcontrib>Rider Tomer</creatorcontrib><creatorcontrib>Assayag Michel</creatorcontrib><creatorcontrib>Sivak Alexander</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pereg Oren</au><au>Wasserblat Moshe</au><au>Taite Shahar</au><au>Rider Tomer</au><au>Assayag Michel</au><au>Sivak Alexander</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dynamic adaptation of language models and semantic tracking for automatic speech recognition</title><date>2018-01-02</date><risdate>2018</risdate><abstract>Generally, this disclosure provides systems, devices, methods and computer readable media for adaptation of language models and semantic tracking to improve automatic speech recognition (ASR). A system for recognizing phrases of speech from a conversation may include an ASR circuit configured to transcribe a user's speech to a first estimated text sequence, based on a generalized language model. The system may also include a language model matching circuit configured to analyze the first estimated text sequence to determine a context and to select a personalized language model (PLM), from a plurality of PLMs, based on that context. The ASR circuit may further be configured to re-transcribe the speech based on the selected PLM to generate a lattice of paths of estimated text sequences, wherein each of the paths of estimated text sequences comprise one or more words and an acoustic score associated with each of the words.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9858923B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Dynamic adaptation of language models and semantic tracking for automatic speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Pereg%20Oren&rft.date=2018-01-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9858923B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true