Distinguishing intentional linguistic deviations from unintentional linguistic deviations

A machine learning engine may correlate contextual information associated with a misspelling in a publication with a likelihood that the misspelling is intentional in nature. Training data may be generated by analyzing one or more past publication to identify misspellings and labeling the misspellin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hamaker Janna S, Hambacher John, Narayanan Gururaj, Bodapati Sravan Babu, Ramaswamy Sriraghavendra
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Hamaker Janna S
Hambacher John
Narayanan Gururaj
Bodapati Sravan Babu
Ramaswamy Sriraghavendra
description A machine learning engine may correlate contextual information associated with a misspelling in a publication with a likelihood that the misspelling is intentional in nature. Training data may be generated by analyzing one or more past publication to identify misspellings and labeling the misspellings as intentional. A contextual indicators application may analyze the context in which intentional misspellings have been previously included within publication to identify indicators of future misspellings being intentional. A machine learning engine may use the training data and indicators to generate an intentional linguistic deviation (ILD) prediction model to determine whether a new misspelling is an intentional misspelling. The machine learning engine may also determine weights for individual indicators that may calibrate the influence of the respective individual indicators. The ILD prediction model may be deployed to analyze a new publication to identify a likelihood of the new misspelling being intentional.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9858257B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9858257B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9858257B13</originalsourceid><addsrcrecordid>eNrjZIh0ySwuycxLL80szgBSCpl5Jal5JZn5eYk5CjkQ8ZLMZIWU1LLMRJBwsUJaUX6uQmkeQYU8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSQ-NNjSwtTCyNTcydCYCCUAgUA8lA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Distinguishing intentional linguistic deviations from unintentional linguistic deviations</title><source>esp@cenet</source><creator>Hamaker Janna S ; Hambacher John ; Narayanan Gururaj ; Bodapati Sravan Babu ; Ramaswamy Sriraghavendra</creator><creatorcontrib>Hamaker Janna S ; Hambacher John ; Narayanan Gururaj ; Bodapati Sravan Babu ; Ramaswamy Sriraghavendra</creatorcontrib><description>A machine learning engine may correlate contextual information associated with a misspelling in a publication with a likelihood that the misspelling is intentional in nature. Training data may be generated by analyzing one or more past publication to identify misspellings and labeling the misspellings as intentional. A contextual indicators application may analyze the context in which intentional misspellings have been previously included within publication to identify indicators of future misspellings being intentional. A machine learning engine may use the training data and indicators to generate an intentional linguistic deviation (ILD) prediction model to determine whether a new misspelling is an intentional misspelling. The machine learning engine may also determine weights for individual indicators that may calibrate the influence of the respective individual indicators. The ILD prediction model may be deployed to analyze a new publication to identify a likelihood of the new misspelling being intentional.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2018</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180102&amp;DB=EPODOC&amp;CC=US&amp;NR=9858257B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20180102&amp;DB=EPODOC&amp;CC=US&amp;NR=9858257B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Hamaker Janna S</creatorcontrib><creatorcontrib>Hambacher John</creatorcontrib><creatorcontrib>Narayanan Gururaj</creatorcontrib><creatorcontrib>Bodapati Sravan Babu</creatorcontrib><creatorcontrib>Ramaswamy Sriraghavendra</creatorcontrib><title>Distinguishing intentional linguistic deviations from unintentional linguistic deviations</title><description>A machine learning engine may correlate contextual information associated with a misspelling in a publication with a likelihood that the misspelling is intentional in nature. Training data may be generated by analyzing one or more past publication to identify misspellings and labeling the misspellings as intentional. A contextual indicators application may analyze the context in which intentional misspellings have been previously included within publication to identify indicators of future misspellings being intentional. A machine learning engine may use the training data and indicators to generate an intentional linguistic deviation (ILD) prediction model to determine whether a new misspelling is an intentional misspelling. The machine learning engine may also determine weights for individual indicators that may calibrate the influence of the respective individual indicators. The ILD prediction model may be deployed to analyze a new publication to identify a likelihood of the new misspelling being intentional.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2018</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZIh0ySwuycxLL80szgBSCpl5Jal5JZn5eYk5CjkQ8ZLMZIWU1LLMRJBwsUJaUX6uQmkeQYU8DKxpiTnFqbxQmptBwc01xNlDN7UgPz61uCAxOTUvtSQ-NNjSwtTCyNTcydCYCCUAgUA8lA</recordid><startdate>20180102</startdate><enddate>20180102</enddate><creator>Hamaker Janna S</creator><creator>Hambacher John</creator><creator>Narayanan Gururaj</creator><creator>Bodapati Sravan Babu</creator><creator>Ramaswamy Sriraghavendra</creator><scope>EVB</scope></search><sort><creationdate>20180102</creationdate><title>Distinguishing intentional linguistic deviations from unintentional linguistic deviations</title><author>Hamaker Janna S ; Hambacher John ; Narayanan Gururaj ; Bodapati Sravan Babu ; Ramaswamy Sriraghavendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9858257B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamaker Janna S</creatorcontrib><creatorcontrib>Hambacher John</creatorcontrib><creatorcontrib>Narayanan Gururaj</creatorcontrib><creatorcontrib>Bodapati Sravan Babu</creatorcontrib><creatorcontrib>Ramaswamy Sriraghavendra</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hamaker Janna S</au><au>Hambacher John</au><au>Narayanan Gururaj</au><au>Bodapati Sravan Babu</au><au>Ramaswamy Sriraghavendra</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Distinguishing intentional linguistic deviations from unintentional linguistic deviations</title><date>2018-01-02</date><risdate>2018</risdate><abstract>A machine learning engine may correlate contextual information associated with a misspelling in a publication with a likelihood that the misspelling is intentional in nature. Training data may be generated by analyzing one or more past publication to identify misspellings and labeling the misspellings as intentional. A contextual indicators application may analyze the context in which intentional misspellings have been previously included within publication to identify indicators of future misspellings being intentional. A machine learning engine may use the training data and indicators to generate an intentional linguistic deviation (ILD) prediction model to determine whether a new misspelling is an intentional misspelling. The machine learning engine may also determine weights for individual indicators that may calibrate the influence of the respective individual indicators. The ILD prediction model may be deployed to analyze a new publication to identify a likelihood of the new misspelling being intentional.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9858257B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Distinguishing intentional linguistic deviations from unintentional linguistic deviations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Hamaker%20Janna%20S&rft.date=2018-01-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9858257B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true