Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process

The invention relates to a method and to an apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip which is to be galvanized and is heated in a continuous annealing furnace is moved through a furnace pi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Peters Klaus Josef, Zeizinger Sabine, Nothacker Gernot, Peters Michael, Schaffrath Norbert
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Peters Klaus Josef
Zeizinger Sabine
Nothacker Gernot
Peters Michael
Schaffrath Norbert
description The invention relates to a method and to an apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip which is to be galvanized and is heated in a continuous annealing furnace is moved through a furnace pipe in protective furnace gas and is immersed into a zinc bath, wherein the furnace pipe is provided with injection openings via which the front side and the rear side of the metal strip can be acted upon with protective furnace gas, and wherein extraction openings for extracting protective furnace gas loaded with zinc vapor are arranged adjacent to the injection openings. The apparatus according to the invention is characterized in that a multiplicity of the injection openings are configured and arranged in the furnace pipe in such a manner that the protective furnace gas streaming out of said injection openings is directed onto that surface of the metal strip which faces the respective injection opening with an angle of impact within the range of 70° to 110°, wherein the distance between the respective injection opening and at least one extraction opening assigned thereto is selected in such a manner that, at a predetermined or predeterminable flow velocity of the protective furnace gas emerging from the respective injection opening, an entraining of protective furnace gas, which occurs during movement of the metal strip, in the direction of the zinc bath is opposed.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9695496B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9695496B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9695496B23</originalsourceid><addsrcrecordid>eNqNjbsKwkAQRdNYiPoP9wdsfATSKoqNlVqHcXcSB8LssrMb0K9XwQ-wunA4nDuthjPnR_Ag9fA8imN0IYHGIF60h5XU0Qd67thlg6Ni7HF_4iXq4ItliILggmbREorBcpKInoaRVOxbiSk4NptXk44G48VvZxWOh-v-tOQYWrb4OVLO7e3S1M1209S71foP5Q2MbUG_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process</title><source>esp@cenet</source><creator>Peters Klaus Josef ; Zeizinger Sabine ; Nothacker Gernot ; Peters Michael ; Schaffrath Norbert</creator><creatorcontrib>Peters Klaus Josef ; Zeizinger Sabine ; Nothacker Gernot ; Peters Michael ; Schaffrath Norbert</creatorcontrib><description>The invention relates to a method and to an apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip which is to be galvanized and is heated in a continuous annealing furnace is moved through a furnace pipe in protective furnace gas and is immersed into a zinc bath, wherein the furnace pipe is provided with injection openings via which the front side and the rear side of the metal strip can be acted upon with protective furnace gas, and wherein extraction openings for extracting protective furnace gas loaded with zinc vapor are arranged adjacent to the injection openings. The apparatus according to the invention is characterized in that a multiplicity of the injection openings are configured and arranged in the furnace pipe in such a manner that the protective furnace gas streaming out of said injection openings is directed onto that surface of the metal strip which faces the respective injection opening with an angle of impact within the range of 70° to 110°, wherein the distance between the respective injection opening and at least one extraction opening assigned thereto is selected in such a manner that, at a predetermined or predeterminable flow velocity of the protective furnace gas emerging from the respective injection opening, an entraining of protective furnace gas, which occurs during movement of the metal strip, in the direction of the zinc bath is opposed.</description><language>eng</language><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS ; METALLURGY ; METALLURGY OF IRON ; MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS ; PERFORMING OPERATIONS ; PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL ; SPRAYING OR ATOMISING IN GENERAL ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170704&amp;DB=EPODOC&amp;CC=US&amp;NR=9695496B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170704&amp;DB=EPODOC&amp;CC=US&amp;NR=9695496B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Peters Klaus Josef</creatorcontrib><creatorcontrib>Zeizinger Sabine</creatorcontrib><creatorcontrib>Nothacker Gernot</creatorcontrib><creatorcontrib>Peters Michael</creatorcontrib><creatorcontrib>Schaffrath Norbert</creatorcontrib><title>Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process</title><description>The invention relates to a method and to an apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip which is to be galvanized and is heated in a continuous annealing furnace is moved through a furnace pipe in protective furnace gas and is immersed into a zinc bath, wherein the furnace pipe is provided with injection openings via which the front side and the rear side of the metal strip can be acted upon with protective furnace gas, and wherein extraction openings for extracting protective furnace gas loaded with zinc vapor are arranged adjacent to the injection openings. The apparatus according to the invention is characterized in that a multiplicity of the injection openings are configured and arranged in the furnace pipe in such a manner that the protective furnace gas streaming out of said injection openings is directed onto that surface of the metal strip which faces the respective injection opening with an angle of impact within the range of 70° to 110°, wherein the distance between the respective injection opening and at least one extraction opening assigned thereto is selected in such a manner that, at a predetermined or predeterminable flow velocity of the protective furnace gas emerging from the respective injection opening, an entraining of protective furnace gas, which occurs during movement of the metal strip, in the direction of the zinc bath is opposed.</description><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</subject><subject>METALLURGY</subject><subject>METALLURGY OF IRON</subject><subject>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</subject><subject>PERFORMING OPERATIONS</subject><subject>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</subject><subject>SPRAYING OR ATOMISING IN GENERAL</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjbsKwkAQRdNYiPoP9wdsfATSKoqNlVqHcXcSB8LssrMb0K9XwQ-wunA4nDuthjPnR_Ag9fA8imN0IYHGIF60h5XU0Qd67thlg6Ni7HF_4iXq4ItliILggmbREorBcpKInoaRVOxbiSk4NptXk44G48VvZxWOh-v-tOQYWrb4OVLO7e3S1M1209S71foP5Q2MbUG_</recordid><startdate>20170704</startdate><enddate>20170704</enddate><creator>Peters Klaus Josef</creator><creator>Zeizinger Sabine</creator><creator>Nothacker Gernot</creator><creator>Peters Michael</creator><creator>Schaffrath Norbert</creator><scope>EVB</scope></search><sort><creationdate>20170704</creationdate><title>Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process</title><author>Peters Klaus Josef ; Zeizinger Sabine ; Nothacker Gernot ; Peters Michael ; Schaffrath Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9695496B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</topic><topic>METALLURGY</topic><topic>METALLURGY OF IRON</topic><topic>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</topic><topic>PERFORMING OPERATIONS</topic><topic>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</topic><topic>SPRAYING OR ATOMISING IN GENERAL</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Peters Klaus Josef</creatorcontrib><creatorcontrib>Zeizinger Sabine</creatorcontrib><creatorcontrib>Nothacker Gernot</creatorcontrib><creatorcontrib>Peters Michael</creatorcontrib><creatorcontrib>Schaffrath Norbert</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peters Klaus Josef</au><au>Zeizinger Sabine</au><au>Nothacker Gernot</au><au>Peters Michael</au><au>Schaffrath Norbert</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process</title><date>2017-07-04</date><risdate>2017</risdate><abstract>The invention relates to a method and to an apparatus for avoiding surface defects, which are caused by zinc dust, on galvanized metal strip in continuous strip galvanization, in which metal strip which is to be galvanized and is heated in a continuous annealing furnace is moved through a furnace pipe in protective furnace gas and is immersed into a zinc bath, wherein the furnace pipe is provided with injection openings via which the front side and the rear side of the metal strip can be acted upon with protective furnace gas, and wherein extraction openings for extracting protective furnace gas loaded with zinc vapor are arranged adjacent to the injection openings. The apparatus according to the invention is characterized in that a multiplicity of the injection openings are configured and arranged in the furnace pipe in such a manner that the protective furnace gas streaming out of said injection openings is directed onto that surface of the metal strip which faces the respective injection opening with an angle of impact within the range of 70° to 110°, wherein the distance between the respective injection opening and at least one extraction opening assigned thereto is selected in such a manner that, at a predetermined or predeterminable flow velocity of the protective furnace gas emerging from the respective injection opening, an entraining of protective furnace gas, which occurs during movement of the metal strip, in the direction of the zinc bath is opposed.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9695496B2
source esp@cenet
subjects APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS
METALLURGY
METALLURGY OF IRON
MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS
PERFORMING OPERATIONS
PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL
SPRAYING OR ATOMISING IN GENERAL
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TRANSPORTING
title Method and device for avoiding surface defects caused by zinc dust in a continuous strip galvanising process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A30%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Peters%20Klaus%20Josef&rft.date=2017-07-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9695496B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true