Deposition and patterning using emitted electrons
A method of creating a localized deposition on a sample in a vacuum chamber having an ion source generating a positively-charged beam of ions and a separate source of primary radiation generating a beam of radiation. An ion beam from the ion source is directed toward the sample, and the primary radi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Anthony John Mark |
description | A method of creating a localized deposition on a sample in a vacuum chamber having an ion source generating a positively-charged beam of ions and a separate source of primary radiation generating a beam of radiation. An ion beam from the ion source is directed toward the sample, and the primary radiation beam is applied to the sample to generate emitted electrons from the sample. The ion beam and the primary radiation beam are positioned so that the paths of at least some of the ions in the ion beam and the paths of at least some of the emitted electrons from the sample substantially overlap in space near the sample surface. The energy of the ions in the ion beam and the electric potential of the sample are adjusted to substantially prevent deposition of ions on the sample. The energy of the ions in the ion beam and the electric potential of the sample are adjusted so that a portion of the ions in the ion beam are neutralized by the emitted electrons from the sample, and such neutralized ions continue in their respective paths to deposit on the sample. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9689068B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9689068B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9689068B23</originalsourceid><addsrcrecordid>eNrjZDB0SS3IL84syczPU0jMS1EoSCwpSS3Ky8xLVygtBpGpuZlAkRSF1JzU5JKi_LxiHgbWtMSc4lReKM3NoODmGuLsoQs0KD61uCAxOTUvtSQ-NNjSzMLSwMzCyciYCCUAfNMsFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Deposition and patterning using emitted electrons</title><source>esp@cenet</source><creator>Anthony John Mark</creator><creatorcontrib>Anthony John Mark</creatorcontrib><description>A method of creating a localized deposition on a sample in a vacuum chamber having an ion source generating a positively-charged beam of ions and a separate source of primary radiation generating a beam of radiation. An ion beam from the ion source is directed toward the sample, and the primary radiation beam is applied to the sample to generate emitted electrons from the sample. The ion beam and the primary radiation beam are positioned so that the paths of at least some of the ions in the ion beam and the paths of at least some of the emitted electrons from the sample substantially overlap in space near the sample surface. The energy of the ions in the ion beam and the electric potential of the sample are adjusted to substantially prevent deposition of ions on the sample. The energy of the ions in the ion beam and the electric potential of the sample are adjusted so that a portion of the ions in the ion beam are neutralized by the emitted electrons from the sample, and such neutralized ions continue in their respective paths to deposit on the sample.</description><language>eng</language><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PERFORMING OPERATIONS ; PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL ; SPRAYING OR ATOMISING IN GENERAL ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TRANSPORTING</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170627&DB=EPODOC&CC=US&NR=9689068B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170627&DB=EPODOC&CC=US&NR=9689068B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Anthony John Mark</creatorcontrib><title>Deposition and patterning using emitted electrons</title><description>A method of creating a localized deposition on a sample in a vacuum chamber having an ion source generating a positively-charged beam of ions and a separate source of primary radiation generating a beam of radiation. An ion beam from the ion source is directed toward the sample, and the primary radiation beam is applied to the sample to generate emitted electrons from the sample. The ion beam and the primary radiation beam are positioned so that the paths of at least some of the ions in the ion beam and the paths of at least some of the emitted electrons from the sample substantially overlap in space near the sample surface. The energy of the ions in the ion beam and the electric potential of the sample are adjusted to substantially prevent deposition of ions on the sample. The energy of the ions in the ion beam and the electric potential of the sample are adjusted so that a portion of the ions in the ion beam are neutralized by the emitted electrons from the sample, and such neutralized ions continue in their respective paths to deposit on the sample.</description><subject>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PERFORMING OPERATIONS</subject><subject>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</subject><subject>SPRAYING OR ATOMISING IN GENERAL</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDB0SS3IL84syczPU0jMS1EoSCwpSS3Ky8xLVygtBpGpuZlAkRSF1JzU5JKi_LxiHgbWtMSc4lReKM3NoODmGuLsoQs0KD61uCAxOTUvtSQ-NNjSzMLSwMzCyciYCCUAfNMsFA</recordid><startdate>20170627</startdate><enddate>20170627</enddate><creator>Anthony John Mark</creator><scope>EVB</scope></search><sort><creationdate>20170627</creationdate><title>Deposition and patterning using emitted electrons</title><author>Anthony John Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9689068B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PERFORMING OPERATIONS</topic><topic>PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL</topic><topic>SPRAYING OR ATOMISING IN GENERAL</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>Anthony John Mark</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Anthony John Mark</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Deposition and patterning using emitted electrons</title><date>2017-06-27</date><risdate>2017</risdate><abstract>A method of creating a localized deposition on a sample in a vacuum chamber having an ion source generating a positively-charged beam of ions and a separate source of primary radiation generating a beam of radiation. An ion beam from the ion source is directed toward the sample, and the primary radiation beam is applied to the sample to generate emitted electrons from the sample. The ion beam and the primary radiation beam are positioned so that the paths of at least some of the ions in the ion beam and the paths of at least some of the emitted electrons from the sample substantially overlap in space near the sample surface. The energy of the ions in the ion beam and the electric potential of the sample are adjusted to substantially prevent deposition of ions on the sample. The energy of the ions in the ion beam and the electric potential of the sample are adjusted so that a portion of the ions in the ion beam are neutralized by the emitted electrons from the sample, and such neutralized ions continue in their respective paths to deposit on the sample.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9689068B2 |
source | esp@cenet |
subjects | APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PERFORMING OPERATIONS PROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TOSURFACES, IN GENERAL SPRAYING OR ATOMISING IN GENERAL SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION TRANSPORTING |
title | Deposition and patterning using emitted electrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Anthony%20John%20Mark&rft.date=2017-06-27&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9689068B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |