Computerized machine learning of interesting video sections
This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high leve...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Li Jin Suri Nitin Hua Xian-Sheng Wang Tzong-Jhy Sproule William D Ivory Andrew S |
description | This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9646227B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9646227B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9646227B23</originalsourceid><addsrcrecordid>eNrjZLB2zs8tKC1JLcqsSk1RyE1MzsjMS1XISU0sysvMS1fIT1PIzAPKphaXgLhlmSmp-QrFqcklmfl5xTwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JD402NLMxMzIyNzJyJgIJQCgLy_c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Computerized machine learning of interesting video sections</title><source>esp@cenet</source><creator>Li Jin ; Suri Nitin ; Hua Xian-Sheng ; Wang Tzong-Jhy ; Sproule William D ; Ivory Andrew S</creator><creatorcontrib>Li Jin ; Suri Nitin ; Hua Xian-Sheng ; Wang Tzong-Jhy ; Sproule William D ; Ivory Andrew S</creatorcontrib><description>This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170509&DB=EPODOC&CC=US&NR=9646227B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170509&DB=EPODOC&CC=US&NR=9646227B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Li Jin</creatorcontrib><creatorcontrib>Suri Nitin</creatorcontrib><creatorcontrib>Hua Xian-Sheng</creatorcontrib><creatorcontrib>Wang Tzong-Jhy</creatorcontrib><creatorcontrib>Sproule William D</creatorcontrib><creatorcontrib>Ivory Andrew S</creatorcontrib><title>Computerized machine learning of interesting video sections</title><description>This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB2zs8tKC1JLcqsSk1RyE1MzsjMS1XISU0sysvMS1fIT1PIzAPKphaXgLhlmSmp-QrFqcklmfl5xTwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JD402NLMxMzIyNzJyJgIJQCgLy_c</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Li Jin</creator><creator>Suri Nitin</creator><creator>Hua Xian-Sheng</creator><creator>Wang Tzong-Jhy</creator><creator>Sproule William D</creator><creator>Ivory Andrew S</creator><scope>EVB</scope></search><sort><creationdate>20170509</creationdate><title>Computerized machine learning of interesting video sections</title><author>Li Jin ; Suri Nitin ; Hua Xian-Sheng ; Wang Tzong-Jhy ; Sproule William D ; Ivory Andrew S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9646227B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Jin</creatorcontrib><creatorcontrib>Suri Nitin</creatorcontrib><creatorcontrib>Hua Xian-Sheng</creatorcontrib><creatorcontrib>Wang Tzong-Jhy</creatorcontrib><creatorcontrib>Sproule William D</creatorcontrib><creatorcontrib>Ivory Andrew S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Jin</au><au>Suri Nitin</au><au>Hua Xian-Sheng</au><au>Wang Tzong-Jhy</au><au>Sproule William D</au><au>Ivory Andrew S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Computerized machine learning of interesting video sections</title><date>2017-05-09</date><risdate>2017</risdate><abstract>This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9646227B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING IMAGE DATA PROCESSING OR GENERATION, IN GENERAL PHYSICS |
title | Computerized machine learning of interesting video sections |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Li%20Jin&rft.date=2017-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9646227B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |