Computerized machine learning of interesting video sections

This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li Jin, Suri Nitin, Hua Xian-Sheng, Wang Tzong-Jhy, Sproule William D, Ivory Andrew S
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Li Jin
Suri Nitin
Hua Xian-Sheng
Wang Tzong-Jhy
Sproule William D
Ivory Andrew S
description This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9646227B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9646227B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9646227B23</originalsourceid><addsrcrecordid>eNrjZLB2zs8tKC1JLcqsSk1RyE1MzsjMS1XISU0sysvMS1fIT1PIzAPKphaXgLhlmSmp-QrFqcklmfl5xTwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JD402NLMxMzIyNzJyJgIJQCgLy_c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Computerized machine learning of interesting video sections</title><source>esp@cenet</source><creator>Li Jin ; Suri Nitin ; Hua Xian-Sheng ; Wang Tzong-Jhy ; Sproule William D ; Ivory Andrew S</creator><creatorcontrib>Li Jin ; Suri Nitin ; Hua Xian-Sheng ; Wang Tzong-Jhy ; Sproule William D ; Ivory Andrew S</creatorcontrib><description>This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; IMAGE DATA PROCESSING OR GENERATION, IN GENERAL ; PHYSICS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170509&amp;DB=EPODOC&amp;CC=US&amp;NR=9646227B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170509&amp;DB=EPODOC&amp;CC=US&amp;NR=9646227B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Li Jin</creatorcontrib><creatorcontrib>Suri Nitin</creatorcontrib><creatorcontrib>Hua Xian-Sheng</creatorcontrib><creatorcontrib>Wang Tzong-Jhy</creatorcontrib><creatorcontrib>Sproule William D</creatorcontrib><creatorcontrib>Ivory Andrew S</creatorcontrib><title>Computerized machine learning of interesting video sections</title><description>This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLB2zs8tKC1JLcqsSk1RyE1MzsjMS1XISU0sysvMS1fIT1PIzAPKphaXgLhlmSmp-QrFqcklmfl5xTwMrGmJOcWpvFCam0HBzTXE2UM3tSA_PrW4IDE5NS-1JD402NLMxMzIyNzJyJgIJQCgLy_c</recordid><startdate>20170509</startdate><enddate>20170509</enddate><creator>Li Jin</creator><creator>Suri Nitin</creator><creator>Hua Xian-Sheng</creator><creator>Wang Tzong-Jhy</creator><creator>Sproule William D</creator><creator>Ivory Andrew S</creator><scope>EVB</scope></search><sort><creationdate>20170509</creationdate><title>Computerized machine learning of interesting video sections</title><author>Li Jin ; Suri Nitin ; Hua Xian-Sheng ; Wang Tzong-Jhy ; Sproule William D ; Ivory Andrew S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9646227B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>IMAGE DATA PROCESSING OR GENERATION, IN GENERAL</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Li Jin</creatorcontrib><creatorcontrib>Suri Nitin</creatorcontrib><creatorcontrib>Hua Xian-Sheng</creatorcontrib><creatorcontrib>Wang Tzong-Jhy</creatorcontrib><creatorcontrib>Sproule William D</creatorcontrib><creatorcontrib>Ivory Andrew S</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li Jin</au><au>Suri Nitin</au><au>Hua Xian-Sheng</au><au>Wang Tzong-Jhy</au><au>Sproule William D</au><au>Ivory Andrew S</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Computerized machine learning of interesting video sections</title><date>2017-05-09</date><risdate>2017</risdate><abstract>This disclosure describes techniques for training models from video data and applying the learned models to identify desirable video data. Video data may be labeled to indicate a semantic category and/or a score indicative of desirability. The video data may be processed to extract low and high level features. A classifier and a scoring model may be trained based on the extracted features. The classifier may estimate a probability that the video data belongs to at least one of the categories in a set of semantic categories. The scoring model may determine a desirability score for the video data. New video data may be processed to extract low and high level features, and feature values may be determined based on the extracted features. The learned classifier and scoring model may be applied to the feature values to determine a desirability score associated with the new video data.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9646227B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
PHYSICS
title Computerized machine learning of interesting video sections
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Li%20Jin&rft.date=2017-05-09&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9646227B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true