Speech recognition semantic classification training
An automated method is described for developing an automated speech input semantic classification system such as a call routing system. A set of semantic classifications is defined for classification of input speech utterances, where each semantic classification represents a specific semantic classi...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Tremblay Réal Mauro Andrew D Duta Nicolae Peters S. Douglas |
description | An automated method is described for developing an automated speech input semantic classification system such as a call routing system. A set of semantic classifications is defined for classification of input speech utterances, where each semantic classification represents a specific semantic classification of the speech input. The semantic classification system is trained from training data from training data substantially without manually transcribed in-domain training data, and then operated to assign input speech utterances to the defined semantic classifications. Adaptation training data based on input speech utterances is collected with manually assigned semantic labels from at least one source of already collected language data. When the adaptation training data satisfies a pre-determined adaptation criteria, the semantic classification system is automatically retrained based on the adaptation training data. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9620110B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9620110B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9620110B23</originalsourceid><addsrcrecordid>eNrjZDAOLkhNTc5QKEpNzk_PyyzJzM9TKE7NTcwryUxWSM5JLC7OTMtMTgSLlxQlZuZl5qXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GBLMyMDQ0MDJyNjIpQAAO_9LMc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Speech recognition semantic classification training</title><source>esp@cenet</source><creator>Tremblay Réal ; Mauro Andrew D ; Duta Nicolae ; Peters S. Douglas</creator><creatorcontrib>Tremblay Réal ; Mauro Andrew D ; Duta Nicolae ; Peters S. Douglas</creatorcontrib><description>An automated method is described for developing an automated speech input semantic classification system such as a call routing system. A set of semantic classifications is defined for classification of input speech utterances, where each semantic classification represents a specific semantic classification of the speech input. The semantic classification system is trained from training data from training data substantially without manually transcribed in-domain training data, and then operated to assign input speech utterances to the defined semantic classifications. Adaptation training data based on input speech utterances is collected with manually assigned semantic labels from at least one source of already collected language data. When the adaptation training data satisfies a pre-determined adaptation criteria, the semantic classification system is automatically retrained based on the adaptation training data.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170411&DB=EPODOC&CC=US&NR=9620110B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25563,76318</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170411&DB=EPODOC&CC=US&NR=9620110B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Tremblay Réal</creatorcontrib><creatorcontrib>Mauro Andrew D</creatorcontrib><creatorcontrib>Duta Nicolae</creatorcontrib><creatorcontrib>Peters S. Douglas</creatorcontrib><title>Speech recognition semantic classification training</title><description>An automated method is described for developing an automated speech input semantic classification system such as a call routing system. A set of semantic classifications is defined for classification of input speech utterances, where each semantic classification represents a specific semantic classification of the speech input. The semantic classification system is trained from training data from training data substantially without manually transcribed in-domain training data, and then operated to assign input speech utterances to the defined semantic classifications. Adaptation training data based on input speech utterances is collected with manually assigned semantic labels from at least one source of already collected language data. When the adaptation training data satisfies a pre-determined adaptation criteria, the semantic classification system is automatically retrained based on the adaptation training data.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDAOLkhNTc5QKEpNzk_PyyzJzM9TKE7NTcwryUxWSM5JLC7OTMtMTgSLlxQlZuZl5qXzMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GBLMyMDQ0MDJyNjIpQAAO_9LMc</recordid><startdate>20170411</startdate><enddate>20170411</enddate><creator>Tremblay Réal</creator><creator>Mauro Andrew D</creator><creator>Duta Nicolae</creator><creator>Peters S. Douglas</creator><scope>EVB</scope></search><sort><creationdate>20170411</creationdate><title>Speech recognition semantic classification training</title><author>Tremblay Réal ; Mauro Andrew D ; Duta Nicolae ; Peters S. Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9620110B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>Tremblay Réal</creatorcontrib><creatorcontrib>Mauro Andrew D</creatorcontrib><creatorcontrib>Duta Nicolae</creatorcontrib><creatorcontrib>Peters S. Douglas</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tremblay Réal</au><au>Mauro Andrew D</au><au>Duta Nicolae</au><au>Peters S. Douglas</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Speech recognition semantic classification training</title><date>2017-04-11</date><risdate>2017</risdate><abstract>An automated method is described for developing an automated speech input semantic classification system such as a call routing system. A set of semantic classifications is defined for classification of input speech utterances, where each semantic classification represents a specific semantic classification of the speech input. The semantic classification system is trained from training data from training data substantially without manually transcribed in-domain training data, and then operated to assign input speech utterances to the defined semantic classifications. Adaptation training data based on input speech utterances is collected with manually assigned semantic labels from at least one source of already collected language data. When the adaptation training data satisfies a pre-determined adaptation criteria, the semantic classification system is automatically retrained based on the adaptation training data.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9620110B2 |
source | esp@cenet |
subjects | ACOUSTICS MUSICAL INSTRUMENTS PHYSICS SPEECH ANALYSIS OR SYNTHESIS SPEECH OR AUDIO CODING OR DECODING SPEECH OR VOICE PROCESSING SPEECH RECOGNITION |
title | Speech recognition semantic classification training |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Tremblay%20R%C3%A9al&rft.date=2017-04-11&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9620110B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |