Complexity-adaptive compression of color images using binary arithmetic coding

An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. Fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gilmutdinov Marat Ravilevich, Egorov Nikolay Dmitrievich, Zalunin Vasily Olegovich
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Gilmutdinov Marat Ravilevich
Egorov Nikolay Dmitrievich
Zalunin Vasily Olegovich
description An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9615111B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9615111B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9615111B23</originalsourceid><addsrcrecordid>eNqNijsOwkAMBbehQMAdfIEUCwKJlghERQPUkdk4wdL-tDaI3J4tOADV6M2bubm0KWRPH9apwR6z8pvAVVdIhFOENNTpUwEOOJLASziO8OCIZQIsrM9Ayq5GfT2WZjagF1r9uDBwOt7ac0M5dSQZHUXS7n7d7-zWWntYb_5IvhafNwU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><source>esp@cenet</source><creator>Gilmutdinov Marat Ravilevich ; Egorov Nikolay Dmitrievich ; Zalunin Vasily Olegovich</creator><creatorcontrib>Gilmutdinov Marat Ravilevich ; Egorov Nikolay Dmitrievich ; Zalunin Vasily Olegovich</creatorcontrib><description>An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170404&amp;DB=EPODOC&amp;CC=US&amp;NR=9615111B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20170404&amp;DB=EPODOC&amp;CC=US&amp;NR=9615111B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gilmutdinov Marat Ravilevich</creatorcontrib><creatorcontrib>Egorov Nikolay Dmitrievich</creatorcontrib><creatorcontrib>Zalunin Vasily Olegovich</creatorcontrib><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><description>An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOwkAMBbehQMAdfIEUCwKJlghERQPUkdk4wdL-tDaI3J4tOADV6M2bubm0KWRPH9apwR6z8pvAVVdIhFOENNTpUwEOOJLASziO8OCIZQIsrM9Ayq5GfT2WZjagF1r9uDBwOt7ac0M5dSQZHUXS7n7d7-zWWntYb_5IvhafNwU</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Gilmutdinov Marat Ravilevich</creator><creator>Egorov Nikolay Dmitrievich</creator><creator>Zalunin Vasily Olegovich</creator><scope>EVB</scope></search><sort><creationdate>20170404</creationdate><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><author>Gilmutdinov Marat Ravilevich ; Egorov Nikolay Dmitrievich ; Zalunin Vasily Olegovich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9615111B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilmutdinov Marat Ravilevich</creatorcontrib><creatorcontrib>Egorov Nikolay Dmitrievich</creatorcontrib><creatorcontrib>Zalunin Vasily Olegovich</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilmutdinov Marat Ravilevich</au><au>Egorov Nikolay Dmitrievich</au><au>Zalunin Vasily Olegovich</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><date>2017-04-04</date><risdate>2017</risdate><abstract>An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9615111B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC COMMUNICATION TECHNIQUE
ELECTRICITY
HANDLING RECORD CARRIERS
PHYSICS
PICTORIAL COMMUNICATION, e.g. TELEVISION
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Complexity-adaptive compression of color images using binary arithmetic coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gilmutdinov%20Marat%20Ravilevich&rft.date=2017-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9615111B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true