Complexity-adaptive compression of color images using binary arithmetic coding
An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. Fo...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gilmutdinov Marat Ravilevich Egorov Nikolay Dmitrievich Zalunin Vasily Olegovich |
description | An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9615111B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9615111B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9615111B23</originalsourceid><addsrcrecordid>eNqNijsOwkAMBbehQMAdfIEUCwKJlghERQPUkdk4wdL-tDaI3J4tOADV6M2bubm0KWRPH9apwR6z8pvAVVdIhFOENNTpUwEOOJLASziO8OCIZQIsrM9Ayq5GfT2WZjagF1r9uDBwOt7ac0M5dSQZHUXS7n7d7-zWWntYb_5IvhafNwU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><source>esp@cenet</source><creator>Gilmutdinov Marat Ravilevich ; Egorov Nikolay Dmitrievich ; Zalunin Vasily Olegovich</creator><creatorcontrib>Gilmutdinov Marat Ravilevich ; Egorov Nikolay Dmitrievich ; Zalunin Vasily Olegovich</creatorcontrib><description>An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC COMMUNICATION TECHNIQUE ; ELECTRICITY ; HANDLING RECORD CARRIERS ; PHYSICS ; PICTORIAL COMMUNICATION, e.g. TELEVISION ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2017</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170404&DB=EPODOC&CC=US&NR=9615111B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170404&DB=EPODOC&CC=US&NR=9615111B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gilmutdinov Marat Ravilevich</creatorcontrib><creatorcontrib>Egorov Nikolay Dmitrievich</creatorcontrib><creatorcontrib>Zalunin Vasily Olegovich</creatorcontrib><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><description>An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC COMMUNICATION TECHNIQUE</subject><subject>ELECTRICITY</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PICTORIAL COMMUNICATION, e.g. TELEVISION</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2017</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijsOwkAMBbehQMAdfIEUCwKJlghERQPUkdk4wdL-tDaI3J4tOADV6M2bubm0KWRPH9apwR6z8pvAVVdIhFOENNTpUwEOOJLASziO8OCIZQIsrM9Ayq5GfT2WZjagF1r9uDBwOt7ac0M5dSQZHUXS7n7d7-zWWntYb_5IvhafNwU</recordid><startdate>20170404</startdate><enddate>20170404</enddate><creator>Gilmutdinov Marat Ravilevich</creator><creator>Egorov Nikolay Dmitrievich</creator><creator>Zalunin Vasily Olegovich</creator><scope>EVB</scope></search><sort><creationdate>20170404</creationdate><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><author>Gilmutdinov Marat Ravilevich ; Egorov Nikolay Dmitrievich ; Zalunin Vasily Olegovich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9615111B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC COMMUNICATION TECHNIQUE</topic><topic>ELECTRICITY</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PICTORIAL COMMUNICATION, e.g. TELEVISION</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilmutdinov Marat Ravilevich</creatorcontrib><creatorcontrib>Egorov Nikolay Dmitrievich</creatorcontrib><creatorcontrib>Zalunin Vasily Olegovich</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gilmutdinov Marat Ravilevich</au><au>Egorov Nikolay Dmitrievich</au><au>Zalunin Vasily Olegovich</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Complexity-adaptive compression of color images using binary arithmetic coding</title><date>2017-04-04</date><risdate>2017</risdate><abstract>An improved technique of compressing image data involves separating a prediction error of image data into distinct factors and applying a separate set of context models to each factor. Such factors may take the form of a sign, a bit category, and a relative absolute value of the prediction error. For each factor, the improved technique provides a set of context models and a procedure for selecting a context model from each respective set. The context model for each factor determines a probability distribution of symbols that may represent that factor, which in turn enables compression of the prediction error. Additionally, the symbols that represent certain factors into which the prediction error is separated result from a binary representation whose form-either unary or uniform-depends on the size of the prediction error.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9615111B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING ELECTRIC COMMUNICATION TECHNIQUE ELECTRICITY HANDLING RECORD CARRIERS PHYSICS PICTORIAL COMMUNICATION, e.g. TELEVISION PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Complexity-adaptive compression of color images using binary arithmetic coding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A27%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Gilmutdinov%20Marat%20Ravilevich&rft.date=2017-04-04&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9615111B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |