Method and system for identifying dependent components

Embodiments include processing a data structure representing a dependency matrix having columns representing respective first components and rows representing respective second components. Aspects include assigning each cell of the matrix a value indicative of the level of dependency or indicative o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vasileiadis Vasileios, Vlachos Michail, Heckel Reinhard Wolfram
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Vasileiadis Vasileios
Vlachos Michail
Heckel Reinhard Wolfram
description Embodiments include processing a data structure representing a dependency matrix having columns representing respective first components and rows representing respective second components. Aspects include assigning each cell of the matrix a value indicative of the level of dependency or indicative of an unknown dependency of a pair of first and second components forming the cell and assigning each component of the first and second components an affiliation vector indicative of the strength of affiliation of the component to N predefined initial clusters of cells of the matrix. Aspects also include determining a probability model using the affiliations vectors parameters and estimating the parameters of the probability model for a plurality of different numbers of clusters starting from the initial number N of clusters. Aspects further include computing a score for the parameters of the probability model estimated and selecting the parameters of the probability model with the highest computed score.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9519864B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9519864B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9519864B13</originalsourceid><addsrcrecordid>eNrjZDDzTS3JyE9RSMxLUSiuLC5JzVVIyy9SyExJzSvJTKvMzEtXSEktSM0D8RWS83ML8vOArGIeBta0xJziVF4ozc2g4OYa4uyhm1qQH59aXJCYnJqXWhIfGmxpamhpYWbiZGhMhBIAcQMt2A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for identifying dependent components</title><source>esp@cenet</source><creator>Vasileiadis Vasileios ; Vlachos Michail ; Heckel Reinhard Wolfram</creator><creatorcontrib>Vasileiadis Vasileios ; Vlachos Michail ; Heckel Reinhard Wolfram</creatorcontrib><description>Embodiments include processing a data structure representing a dependency matrix having columns representing respective first components and rows representing respective second components. Aspects include assigning each cell of the matrix a value indicative of the level of dependency or indicative of an unknown dependency of a pair of first and second components forming the cell and assigning each component of the first and second components an affiliation vector indicative of the strength of affiliation of the component to N predefined initial clusters of cells of the matrix. Aspects also include determining a probability model using the affiliations vectors parameters and estimating the parameters of the probability model for a plurality of different numbers of clusters starting from the initial number N of clusters. Aspects further include computing a score for the parameters of the probability model estimated and selecting the parameters of the probability model with the highest computed score.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161213&amp;DB=EPODOC&amp;CC=US&amp;NR=9519864B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161213&amp;DB=EPODOC&amp;CC=US&amp;NR=9519864B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Vasileiadis Vasileios</creatorcontrib><creatorcontrib>Vlachos Michail</creatorcontrib><creatorcontrib>Heckel Reinhard Wolfram</creatorcontrib><title>Method and system for identifying dependent components</title><description>Embodiments include processing a data structure representing a dependency matrix having columns representing respective first components and rows representing respective second components. Aspects include assigning each cell of the matrix a value indicative of the level of dependency or indicative of an unknown dependency of a pair of first and second components forming the cell and assigning each component of the first and second components an affiliation vector indicative of the strength of affiliation of the component to N predefined initial clusters of cells of the matrix. Aspects also include determining a probability model using the affiliations vectors parameters and estimating the parameters of the probability model for a plurality of different numbers of clusters starting from the initial number N of clusters. Aspects further include computing a score for the parameters of the probability model estimated and selecting the parameters of the probability model with the highest computed score.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZDDzTS3JyE9RSMxLUSiuLC5JzVVIyy9SyExJzSvJTKvMzEtXSEktSM0D8RWS83ML8vOArGIeBta0xJziVF4ozc2g4OYa4uyhm1qQH59aXJCYnJqXWhIfGmxpamhpYWbiZGhMhBIAcQMt2A</recordid><startdate>20161213</startdate><enddate>20161213</enddate><creator>Vasileiadis Vasileios</creator><creator>Vlachos Michail</creator><creator>Heckel Reinhard Wolfram</creator><scope>EVB</scope></search><sort><creationdate>20161213</creationdate><title>Method and system for identifying dependent components</title><author>Vasileiadis Vasileios ; Vlachos Michail ; Heckel Reinhard Wolfram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9519864B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Vasileiadis Vasileios</creatorcontrib><creatorcontrib>Vlachos Michail</creatorcontrib><creatorcontrib>Heckel Reinhard Wolfram</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasileiadis Vasileios</au><au>Vlachos Michail</au><au>Heckel Reinhard Wolfram</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for identifying dependent components</title><date>2016-12-13</date><risdate>2016</risdate><abstract>Embodiments include processing a data structure representing a dependency matrix having columns representing respective first components and rows representing respective second components. Aspects include assigning each cell of the matrix a value indicative of the level of dependency or indicative of an unknown dependency of a pair of first and second components forming the cell and assigning each component of the first and second components an affiliation vector indicative of the strength of affiliation of the component to N predefined initial clusters of cells of the matrix. Aspects also include determining a probability model using the affiliations vectors parameters and estimating the parameters of the probability model for a plurality of different numbers of clusters starting from the initial number N of clusters. Aspects further include computing a score for the parameters of the probability model estimated and selecting the parameters of the probability model with the highest computed score.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9519864B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Method and system for identifying dependent components
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Vasileiadis%20Vasileios&rft.date=2016-12-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9519864B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true