Using embedding functions with a deep network
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Grady Julian P Corrado Gregory S Chen Kai Sculley, II David W Dean Jeffrey A Holt Gary R Chikkerur Sharat |
description | Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9514404B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9514404B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9514404B13</originalsourceid><addsrcrecordid>eNrjZNANLc7MS1dIzU1KTUkBsdJK85JLMvPzihXKM0syFBIVUlJTCxTyUkvK84uyeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnIqUGV8aLClqaGJiYGJk6ExEUoAdBQp3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Using embedding functions with a deep network</title><source>esp@cenet</source><creator>Grady Julian P ; Corrado Gregory S ; Chen Kai ; Sculley, II David W ; Dean Jeffrey A ; Holt Gary R ; Chikkerur Sharat</creator><creatorcontrib>Grady Julian P ; Corrado Gregory S ; Chen Kai ; Sculley, II David W ; Dean Jeffrey A ; Holt Gary R ; Chikkerur Sharat</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.</description><language>eng</language><subject>ANALOGUE COMPUTERS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; OPTICAL COMPUTING DEVICES ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161206&DB=EPODOC&CC=US&NR=9514404B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20161206&DB=EPODOC&CC=US&NR=9514404B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Grady Julian P</creatorcontrib><creatorcontrib>Corrado Gregory S</creatorcontrib><creatorcontrib>Chen Kai</creatorcontrib><creatorcontrib>Sculley, II David W</creatorcontrib><creatorcontrib>Dean Jeffrey A</creatorcontrib><creatorcontrib>Holt Gary R</creatorcontrib><creatorcontrib>Chikkerur Sharat</creatorcontrib><title>Using embedding functions with a deep network</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.</description><subject>ANALOGUE COMPUTERS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>OPTICAL COMPUTING DEVICES</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNANLc7MS1dIzU1KTUkBsdJK85JLMvPzihXKM0syFBIVUlJTCxTyUkvK84uyeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnIqUGV8aLClqaGJiYGJk6ExEUoAdBQp3Q</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Grady Julian P</creator><creator>Corrado Gregory S</creator><creator>Chen Kai</creator><creator>Sculley, II David W</creator><creator>Dean Jeffrey A</creator><creator>Holt Gary R</creator><creator>Chikkerur Sharat</creator><scope>EVB</scope></search><sort><creationdate>20161206</creationdate><title>Using embedding functions with a deep network</title><author>Grady Julian P ; Corrado Gregory S ; Chen Kai ; Sculley, II David W ; Dean Jeffrey A ; Holt Gary R ; Chikkerur Sharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9514404B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANALOGUE COMPUTERS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>OPTICAL COMPUTING DEVICES</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Grady Julian P</creatorcontrib><creatorcontrib>Corrado Gregory S</creatorcontrib><creatorcontrib>Chen Kai</creatorcontrib><creatorcontrib>Sculley, II David W</creatorcontrib><creatorcontrib>Dean Jeffrey A</creatorcontrib><creatorcontrib>Holt Gary R</creatorcontrib><creatorcontrib>Chikkerur Sharat</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grady Julian P</au><au>Corrado Gregory S</au><au>Chen Kai</au><au>Sculley, II David W</au><au>Dean Jeffrey A</au><au>Holt Gary R</au><au>Chikkerur Sharat</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Using embedding functions with a deep network</title><date>2016-12-06</date><risdate>2016</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9514404B1 |
source | esp@cenet |
subjects | ANALOGUE COMPUTERS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING OPTICAL COMPUTING DEVICES PHYSICS |
title | Using embedding functions with a deep network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Grady%20Julian%20P&rft.date=2016-12-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9514404B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |