Using embedding functions with a deep network

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Grady Julian P, Corrado Gregory S, Chen Kai, Sculley, II David W, Dean Jeffrey A, Holt Gary R, Chikkerur Sharat
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Grady Julian P
Corrado Gregory S
Chen Kai
Sculley, II David W
Dean Jeffrey A
Holt Gary R
Chikkerur Sharat
description Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9514404B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9514404B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9514404B13</originalsourceid><addsrcrecordid>eNrjZNANLc7MS1dIzU1KTUkBsdJK85JLMvPzihXKM0syFBIVUlJTCxTyUkvK84uyeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnIqUGV8aLClqaGJiYGJk6ExEUoAdBQp3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Using embedding functions with a deep network</title><source>esp@cenet</source><creator>Grady Julian P ; Corrado Gregory S ; Chen Kai ; Sculley, II David W ; Dean Jeffrey A ; Holt Gary R ; Chikkerur Sharat</creator><creatorcontrib>Grady Julian P ; Corrado Gregory S ; Chen Kai ; Sculley, II David W ; Dean Jeffrey A ; Holt Gary R ; Chikkerur Sharat</creatorcontrib><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.</description><language>eng</language><subject>ANALOGUE COMPUTERS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; OPTICAL COMPUTING DEVICES ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161206&amp;DB=EPODOC&amp;CC=US&amp;NR=9514404B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25544,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20161206&amp;DB=EPODOC&amp;CC=US&amp;NR=9514404B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Grady Julian P</creatorcontrib><creatorcontrib>Corrado Gregory S</creatorcontrib><creatorcontrib>Chen Kai</creatorcontrib><creatorcontrib>Sculley, II David W</creatorcontrib><creatorcontrib>Dean Jeffrey A</creatorcontrib><creatorcontrib>Holt Gary R</creatorcontrib><creatorcontrib>Chikkerur Sharat</creatorcontrib><title>Using embedding functions with a deep network</title><description>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.</description><subject>ANALOGUE COMPUTERS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>OPTICAL COMPUTING DEVICES</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNANLc7MS1dIzU1KTUkBsdJK85JLMvPzihXKM0syFBIVUlJTCxTyUkvK84uyeRhY0xJzilN5oTQ3g4Kba4izh25qQX58anFBYnIqUGV8aLClqaGJiYGJk6ExEUoAdBQp3Q</recordid><startdate>20161206</startdate><enddate>20161206</enddate><creator>Grady Julian P</creator><creator>Corrado Gregory S</creator><creator>Chen Kai</creator><creator>Sculley, II David W</creator><creator>Dean Jeffrey A</creator><creator>Holt Gary R</creator><creator>Chikkerur Sharat</creator><scope>EVB</scope></search><sort><creationdate>20161206</creationdate><title>Using embedding functions with a deep network</title><author>Grady Julian P ; Corrado Gregory S ; Chen Kai ; Sculley, II David W ; Dean Jeffrey A ; Holt Gary R ; Chikkerur Sharat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9514404B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ANALOGUE COMPUTERS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>OPTICAL COMPUTING DEVICES</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Grady Julian P</creatorcontrib><creatorcontrib>Corrado Gregory S</creatorcontrib><creatorcontrib>Chen Kai</creatorcontrib><creatorcontrib>Sculley, II David W</creatorcontrib><creatorcontrib>Dean Jeffrey A</creatorcontrib><creatorcontrib>Holt Gary R</creatorcontrib><creatorcontrib>Chikkerur Sharat</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Grady Julian P</au><au>Corrado Gregory S</au><au>Chen Kai</au><au>Sculley, II David W</au><au>Dean Jeffrey A</au><au>Holt Gary R</au><au>Chikkerur Sharat</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Using embedding functions with a deep network</title><date>2016-12-06</date><risdate>2016</risdate><abstract>Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using embedded function with a deep network. One of the methods includes receiving an input comprising a plurality of features, wherein each of the features is of a different feature type; processing each of the features using a respective embedding function to generate one or more numeric values, wherein each of the embedding functions operates independently of each other embedding function, and wherein each of the embedding functions is used for features of a respective feature type; processing the numeric values using a deep network to generate a first alternative representation of the input, wherein the deep network is a machine learning model composed of a plurality of levels of non-linear operations; and processing the first alternative representation of the input using a logistic regression classifier to predict a label for the input.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9514404B1
source esp@cenet
subjects ANALOGUE COMPUTERS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
OPTICAL COMPUTING DEVICES
PHYSICS
title Using embedding functions with a deep network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Grady%20Julian%20P&rft.date=2016-12-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9514404B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true