Missing value imputation for predictive models
Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to con...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Chu Yea J Han Sier Xu Jing Shyr Jing-Yun |
description | Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9443194B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9443194B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9443194B23</originalsourceid><addsrcrecordid>eNrjZNDzzSwuzsxLVyhLzClNVcjMLSgtSSzJzM9TSMsvUigoSk3JTC7JLEtVyM1PSc0p5mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBliYmxoaWJk5GxkQoAQDaiSrG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Missing value imputation for predictive models</title><source>esp@cenet</source><creator>Chu Yea J ; Han Sier ; Xu Jing ; Shyr Jing-Yun</creator><creatorcontrib>Chu Yea J ; Han Sier ; Xu Jing ; Shyr Jing-Yun</creatorcontrib><description>Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160913&DB=EPODOC&CC=US&NR=9443194B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160913&DB=EPODOC&CC=US&NR=9443194B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chu Yea J</creatorcontrib><creatorcontrib>Han Sier</creatorcontrib><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><title>Missing value imputation for predictive models</title><description>Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDzzSwuzsxLVyhLzClNVcjMLSgtSSzJzM9TSMsvUigoSk3JTC7JLEtVyM1PSc0p5mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBliYmxoaWJk5GxkQoAQDaiSrG</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Chu Yea J</creator><creator>Han Sier</creator><creator>Xu Jing</creator><creator>Shyr Jing-Yun</creator><scope>EVB</scope></search><sort><creationdate>20160913</creationdate><title>Missing value imputation for predictive models</title><author>Chu Yea J ; Han Sier ; Xu Jing ; Shyr Jing-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9443194B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu Yea J</creatorcontrib><creatorcontrib>Han Sier</creatorcontrib><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu Yea J</au><au>Han Sier</au><au>Xu Jing</au><au>Shyr Jing-Yun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Missing value imputation for predictive models</title><date>2016-09-13</date><risdate>2016</risdate><abstract>Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9443194B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
title | Missing value imputation for predictive models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chu%20Yea%20J&rft.date=2016-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9443194B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |