Missing value imputation for predictive models

Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chu Yea J, Han Sier, Xu Jing, Shyr Jing-Yun
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Chu Yea J
Han Sier
Xu Jing
Shyr Jing-Yun
description Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9443194B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9443194B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9443194B23</originalsourceid><addsrcrecordid>eNrjZNDzzSwuzsxLVyhLzClNVcjMLSgtSSzJzM9TSMsvUigoSk3JTC7JLEtVyM1PSc0p5mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBliYmxoaWJk5GxkQoAQDaiSrG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Missing value imputation for predictive models</title><source>esp@cenet</source><creator>Chu Yea J ; Han Sier ; Xu Jing ; Shyr Jing-Yun</creator><creatorcontrib>Chu Yea J ; Han Sier ; Xu Jing ; Shyr Jing-Yun</creatorcontrib><description>Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; PHYSICS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160913&amp;DB=EPODOC&amp;CC=US&amp;NR=9443194B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160913&amp;DB=EPODOC&amp;CC=US&amp;NR=9443194B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Chu Yea J</creatorcontrib><creatorcontrib>Han Sier</creatorcontrib><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><title>Missing value imputation for predictive models</title><description>Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNDzzSwuzsxLVyhLzClNVcjMLSgtSSzJzM9TSMsvUigoSk3JTC7JLEtVyM1PSc0p5mFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBliYmxoaWJk5GxkQoAQDaiSrG</recordid><startdate>20160913</startdate><enddate>20160913</enddate><creator>Chu Yea J</creator><creator>Han Sier</creator><creator>Xu Jing</creator><creator>Shyr Jing-Yun</creator><scope>EVB</scope></search><sort><creationdate>20160913</creationdate><title>Missing value imputation for predictive models</title><author>Chu Yea J ; Han Sier ; Xu Jing ; Shyr Jing-Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9443194B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>Chu Yea J</creatorcontrib><creatorcontrib>Han Sier</creatorcontrib><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Shyr Jing-Yun</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chu Yea J</au><au>Han Sier</au><au>Xu Jing</au><au>Shyr Jing-Yun</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Missing value imputation for predictive models</title><date>2016-09-13</date><risdate>2016</risdate><abstract>Provided are techniques for imputing a missing value for each of one or more predictor variables. Data is received from one or more data sources. For each of the one or more predictor variables, an imputation model is built based on information of a target variable; a type of imputation model to construct is determined based on the one or more data sources, a measurement level of the predictor variable, and a measurement level of the target variable; and the determined type of imputation model is constructed using basic statistics of the predictor variable and the target variable. The missing value is imputed for each of the one or more predictor variables using the data from the one or more data sources and one or more built imputation models to generate a completed data set.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9443194B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
title Missing value imputation for predictive models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A09%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=Chu%20Yea%20J&rft.date=2016-09-13&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9443194B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true