Dielectric material

A dielectric material which is able to detect a sign of insulation breakdown before use or while in use, and thus is able to predict the insulation breakdown in advance is provided. Such a dielectric material is made of a composite sintered compact in which conductive particles are dispersed in an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YOSHIOKA YOSHIKI, OOTOMO MEGUMI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YOSHIOKA YOSHIKI
OOTOMO MEGUMI
description A dielectric material which is able to detect a sign of insulation breakdown before use or while in use, and thus is able to predict the insulation breakdown in advance is provided. Such a dielectric material is made of a composite sintered compact in which conductive particles are dispersed in an insulating material, in which in the conductive particles, a particle diameter D10 having a cumulative volume percentage of 10% by volume in a volume particle size distribution is 0.2 μm or less, a particle diameter D90 having a cumulative volume percentage of 90% by volume is 2 μm or less, a ratio (D90/D10) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D10 having a cumulative volume percentage of 10% by volume is 3.0 or more, and a ratio (D90/D50) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D50 having a cumulative volume percentage of 50% by volume is 1.4 or more.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9378862B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9378862B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9378862B23</originalsourceid><addsrcrecordid>eNrjZBB2yUzNSU0uKcpMVshNLEktykzM4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBlsbmFhZmRk5GxkQoAQDvBCBJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Dielectric material</title><source>esp@cenet</source><creator>YOSHIOKA YOSHIKI ; OOTOMO MEGUMI</creator><creatorcontrib>YOSHIOKA YOSHIKI ; OOTOMO MEGUMI</creatorcontrib><description>A dielectric material which is able to detect a sign of insulation breakdown before use or while in use, and thus is able to predict the insulation breakdown in advance is provided. Such a dielectric material is made of a composite sintered compact in which conductive particles are dispersed in an insulating material, in which in the conductive particles, a particle diameter D10 having a cumulative volume percentage of 10% by volume in a volume particle size distribution is 0.2 μm or less, a particle diameter D90 having a cumulative volume percentage of 90% by volume is 2 μm or less, a ratio (D90/D10) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D10 having a cumulative volume percentage of 10% by volume is 3.0 or more, and a ratio (D90/D50) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D50 having a cumulative volume percentage of 50% by volume is 1.4 or more.</description><language>eng</language><subject>ARTIFICIAL STONE ; BASIC ELECTRIC ELEMENTS ; CABLES ; CEMENTS ; CERAMICS ; CHEMISTRY ; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS ; CONCRETE ; CONDUCTORS ; ELECTRICITY ; INSULATORS ; LIME, MAGNESIA ; METALLURGY ; REFRACTORIES ; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING ORDIELECTRIC PROPERTIES ; SLAG ; TREATMENT OF NATURAL STONE</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160628&amp;DB=EPODOC&amp;CC=US&amp;NR=9378862B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160628&amp;DB=EPODOC&amp;CC=US&amp;NR=9378862B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YOSHIOKA YOSHIKI</creatorcontrib><creatorcontrib>OOTOMO MEGUMI</creatorcontrib><title>Dielectric material</title><description>A dielectric material which is able to detect a sign of insulation breakdown before use or while in use, and thus is able to predict the insulation breakdown in advance is provided. Such a dielectric material is made of a composite sintered compact in which conductive particles are dispersed in an insulating material, in which in the conductive particles, a particle diameter D10 having a cumulative volume percentage of 10% by volume in a volume particle size distribution is 0.2 μm or less, a particle diameter D90 having a cumulative volume percentage of 90% by volume is 2 μm or less, a ratio (D90/D10) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D10 having a cumulative volume percentage of 10% by volume is 3.0 or more, and a ratio (D90/D50) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D50 having a cumulative volume percentage of 50% by volume is 1.4 or more.</description><subject>ARTIFICIAL STONE</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CABLES</subject><subject>CEMENTS</subject><subject>CERAMICS</subject><subject>CHEMISTRY</subject><subject>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</subject><subject>CONCRETE</subject><subject>CONDUCTORS</subject><subject>ELECTRICITY</subject><subject>INSULATORS</subject><subject>LIME, MAGNESIA</subject><subject>METALLURGY</subject><subject>REFRACTORIES</subject><subject>SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING ORDIELECTRIC PROPERTIES</subject><subject>SLAG</subject><subject>TREATMENT OF NATURAL STONE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZBB2yUzNSU0uKcpMVshNLEktykzM4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBlsbmFhZmRk5GxkQoAQDvBCBJ</recordid><startdate>20160628</startdate><enddate>20160628</enddate><creator>YOSHIOKA YOSHIKI</creator><creator>OOTOMO MEGUMI</creator><scope>EVB</scope></search><sort><creationdate>20160628</creationdate><title>Dielectric material</title><author>YOSHIOKA YOSHIKI ; OOTOMO MEGUMI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9378862B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ARTIFICIAL STONE</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CABLES</topic><topic>CEMENTS</topic><topic>CERAMICS</topic><topic>CHEMISTRY</topic><topic>COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS</topic><topic>CONCRETE</topic><topic>CONDUCTORS</topic><topic>ELECTRICITY</topic><topic>INSULATORS</topic><topic>LIME, MAGNESIA</topic><topic>METALLURGY</topic><topic>REFRACTORIES</topic><topic>SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING ORDIELECTRIC PROPERTIES</topic><topic>SLAG</topic><topic>TREATMENT OF NATURAL STONE</topic><toplevel>online_resources</toplevel><creatorcontrib>YOSHIOKA YOSHIKI</creatorcontrib><creatorcontrib>OOTOMO MEGUMI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YOSHIOKA YOSHIKI</au><au>OOTOMO MEGUMI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Dielectric material</title><date>2016-06-28</date><risdate>2016</risdate><abstract>A dielectric material which is able to detect a sign of insulation breakdown before use or while in use, and thus is able to predict the insulation breakdown in advance is provided. Such a dielectric material is made of a composite sintered compact in which conductive particles are dispersed in an insulating material, in which in the conductive particles, a particle diameter D10 having a cumulative volume percentage of 10% by volume in a volume particle size distribution is 0.2 μm or less, a particle diameter D90 having a cumulative volume percentage of 90% by volume is 2 μm or less, a ratio (D90/D10) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D10 having a cumulative volume percentage of 10% by volume is 3.0 or more, and a ratio (D90/D50) of the particle diameter D90 having a cumulative volume percentage of 90% by volume to the particle diameter D50 having a cumulative volume percentage of 50% by volume is 1.4 or more.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9378862B2
source esp@cenet
subjects ARTIFICIAL STONE
BASIC ELECTRIC ELEMENTS
CABLES
CEMENTS
CERAMICS
CHEMISTRY
COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDINGMATERIALS
CONCRETE
CONDUCTORS
ELECTRICITY
INSULATORS
LIME, MAGNESIA
METALLURGY
REFRACTORIES
SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING ORDIELECTRIC PROPERTIES
SLAG
TREATMENT OF NATURAL STONE
title Dielectric material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A28%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YOSHIOKA%20YOSHIKI&rft.date=2016-06-28&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9378862B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true