Semantic representation module of a machine-learning engine in a video analysis system

A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GOTTUMUKKAL RAJKIRAN K, COBB WESLEY KENNETH, URECH DENNIS G, FRIEDLANDER DAVID S, YANG TAO, XU GANG, RISINGER LON W, SEOW MING-JUNG, EATON JOHN ERIC, SOLUM DAVID M, SAITWAL KISHOR ADINATH
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GOTTUMUKKAL RAJKIRAN K
COBB WESLEY KENNETH
URECH DENNIS G
FRIEDLANDER DAVID S
YANG TAO
XU GANG
RISINGER LON W
SEOW MING-JUNG
EATON JOHN ERIC
SOLUM DAVID M
SAITWAL KISHOR ADINATH
description A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9235752B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9235752B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9235752B23</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqHuUCahCC2SsQ-ahuGzU8c2J1dMquQ25vCA1g9Hu9ti2eHwJrF0Yw0w6CZs0SlEIe3B8WRmAK7lyhKD55VdCLotDqJrvEjAyKxsl9MjGyxjLAvNiN7w-HHXUHX9n65lUixhyV2UOT-0Z2qujk21bmq_1i-xC05dA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Semantic representation module of a machine-learning engine in a video analysis system</title><source>esp@cenet</source><creator>GOTTUMUKKAL RAJKIRAN K ; COBB WESLEY KENNETH ; URECH DENNIS G ; FRIEDLANDER DAVID S ; YANG TAO ; XU GANG ; RISINGER LON W ; SEOW MING-JUNG ; EATON JOHN ERIC ; SOLUM DAVID M ; SAITWAL KISHOR ADINATH</creator><creatorcontrib>GOTTUMUKKAL RAJKIRAN K ; COBB WESLEY KENNETH ; URECH DENNIS G ; FRIEDLANDER DAVID S ; YANG TAO ; XU GANG ; RISINGER LON W ; SEOW MING-JUNG ; EATON JOHN ERIC ; SOLUM DAVID M ; SAITWAL KISHOR ADINATH</creatorcontrib><description>A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160112&amp;DB=EPODOC&amp;CC=US&amp;NR=9235752B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160112&amp;DB=EPODOC&amp;CC=US&amp;NR=9235752B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GOTTUMUKKAL RAJKIRAN K</creatorcontrib><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>URECH DENNIS G</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID S</creatorcontrib><creatorcontrib>YANG TAO</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>RISINGER LON W</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>EATON JOHN ERIC</creatorcontrib><creatorcontrib>SOLUM DAVID M</creatorcontrib><creatorcontrib>SAITWAL KISHOR ADINATH</creatorcontrib><title>Semantic representation module of a machine-learning engine in a video analysis system</title><description>A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqHuUCahCC2SsQ-ahuGzU8c2J1dMquQ25vCA1g9Hu9ti2eHwJrF0Yw0w6CZs0SlEIe3B8WRmAK7lyhKD55VdCLotDqJrvEjAyKxsl9MjGyxjLAvNiN7w-HHXUHX9n65lUixhyV2UOT-0Z2qujk21bmq_1i-xC05dA</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>GOTTUMUKKAL RAJKIRAN K</creator><creator>COBB WESLEY KENNETH</creator><creator>URECH DENNIS G</creator><creator>FRIEDLANDER DAVID S</creator><creator>YANG TAO</creator><creator>XU GANG</creator><creator>RISINGER LON W</creator><creator>SEOW MING-JUNG</creator><creator>EATON JOHN ERIC</creator><creator>SOLUM DAVID M</creator><creator>SAITWAL KISHOR ADINATH</creator><scope>EVB</scope></search><sort><creationdate>20160112</creationdate><title>Semantic representation module of a machine-learning engine in a video analysis system</title><author>GOTTUMUKKAL RAJKIRAN K ; COBB WESLEY KENNETH ; URECH DENNIS G ; FRIEDLANDER DAVID S ; YANG TAO ; XU GANG ; RISINGER LON W ; SEOW MING-JUNG ; EATON JOHN ERIC ; SOLUM DAVID M ; SAITWAL KISHOR ADINATH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9235752B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>GOTTUMUKKAL RAJKIRAN K</creatorcontrib><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>URECH DENNIS G</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID S</creatorcontrib><creatorcontrib>YANG TAO</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>RISINGER LON W</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>EATON JOHN ERIC</creatorcontrib><creatorcontrib>SOLUM DAVID M</creatorcontrib><creatorcontrib>SAITWAL KISHOR ADINATH</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GOTTUMUKKAL RAJKIRAN K</au><au>COBB WESLEY KENNETH</au><au>URECH DENNIS G</au><au>FRIEDLANDER DAVID S</au><au>YANG TAO</au><au>XU GANG</au><au>RISINGER LON W</au><au>SEOW MING-JUNG</au><au>EATON JOHN ERIC</au><au>SOLUM DAVID M</au><au>SAITWAL KISHOR ADINATH</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Semantic representation module of a machine-learning engine in a video analysis system</title><date>2016-01-12</date><risdate>2016</risdate><abstract>A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9235752B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Semantic representation module of a machine-learning engine in a video analysis system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GOTTUMUKKAL%20RAJKIRAN%20K&rft.date=2016-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9235752B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true