Semantic representation module of a machine-learning engine in a video analysis system
A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configur...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | GOTTUMUKKAL RAJKIRAN K COBB WESLEY KENNETH URECH DENNIS G FRIEDLANDER DAVID S YANG TAO XU GANG RISINGER LON W SEOW MING-JUNG EATON JOHN ERIC SOLUM DAVID M SAITWAL KISHOR ADINATH |
description | A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9235752B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9235752B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9235752B23</originalsourceid><addsrcrecordid>eNqNijEKwkAQRdNYiHqHuUCahCC2SsQ-ahuGzU8c2J1dMquQ25vCA1g9Hu9ti2eHwJrF0Yw0w6CZs0SlEIe3B8WRmAK7lyhKD55VdCLotDqJrvEjAyKxsl9MjGyxjLAvNiN7w-HHXUHX9n65lUixhyV2UOT-0Z2qujk21bmq_1i-xC05dA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Semantic representation module of a machine-learning engine in a video analysis system</title><source>esp@cenet</source><creator>GOTTUMUKKAL RAJKIRAN K ; COBB WESLEY KENNETH ; URECH DENNIS G ; FRIEDLANDER DAVID S ; YANG TAO ; XU GANG ; RISINGER LON W ; SEOW MING-JUNG ; EATON JOHN ERIC ; SOLUM DAVID M ; SAITWAL KISHOR ADINATH</creator><creatorcontrib>GOTTUMUKKAL RAJKIRAN K ; COBB WESLEY KENNETH ; URECH DENNIS G ; FRIEDLANDER DAVID S ; YANG TAO ; XU GANG ; RISINGER LON W ; SEOW MING-JUNG ; EATON JOHN ERIC ; SOLUM DAVID M ; SAITWAL KISHOR ADINATH</creatorcontrib><description>A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160112&DB=EPODOC&CC=US&NR=9235752B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160112&DB=EPODOC&CC=US&NR=9235752B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GOTTUMUKKAL RAJKIRAN K</creatorcontrib><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>URECH DENNIS G</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID S</creatorcontrib><creatorcontrib>YANG TAO</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>RISINGER LON W</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>EATON JOHN ERIC</creatorcontrib><creatorcontrib>SOLUM DAVID M</creatorcontrib><creatorcontrib>SAITWAL KISHOR ADINATH</creatorcontrib><title>Semantic representation module of a machine-learning engine in a video analysis system</title><description>A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNijEKwkAQRdNYiHqHuUCahCC2SsQ-ahuGzU8c2J1dMquQ25vCA1g9Hu9ti2eHwJrF0Yw0w6CZs0SlEIe3B8WRmAK7lyhKD55VdCLotDqJrvEjAyKxsl9MjGyxjLAvNiN7w-HHXUHX9n65lUixhyV2UOT-0Z2qujk21bmq_1i-xC05dA</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>GOTTUMUKKAL RAJKIRAN K</creator><creator>COBB WESLEY KENNETH</creator><creator>URECH DENNIS G</creator><creator>FRIEDLANDER DAVID S</creator><creator>YANG TAO</creator><creator>XU GANG</creator><creator>RISINGER LON W</creator><creator>SEOW MING-JUNG</creator><creator>EATON JOHN ERIC</creator><creator>SOLUM DAVID M</creator><creator>SAITWAL KISHOR ADINATH</creator><scope>EVB</scope></search><sort><creationdate>20160112</creationdate><title>Semantic representation module of a machine-learning engine in a video analysis system</title><author>GOTTUMUKKAL RAJKIRAN K ; COBB WESLEY KENNETH ; URECH DENNIS G ; FRIEDLANDER DAVID S ; YANG TAO ; XU GANG ; RISINGER LON W ; SEOW MING-JUNG ; EATON JOHN ERIC ; SOLUM DAVID M ; SAITWAL KISHOR ADINATH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9235752B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>GOTTUMUKKAL RAJKIRAN K</creatorcontrib><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>URECH DENNIS G</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID S</creatorcontrib><creatorcontrib>YANG TAO</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>RISINGER LON W</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>EATON JOHN ERIC</creatorcontrib><creatorcontrib>SOLUM DAVID M</creatorcontrib><creatorcontrib>SAITWAL KISHOR ADINATH</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GOTTUMUKKAL RAJKIRAN K</au><au>COBB WESLEY KENNETH</au><au>URECH DENNIS G</au><au>FRIEDLANDER DAVID S</au><au>YANG TAO</au><au>XU GANG</au><au>RISINGER LON W</au><au>SEOW MING-JUNG</au><au>EATON JOHN ERIC</au><au>SOLUM DAVID M</au><au>SAITWAL KISHOR ADINATH</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Semantic representation module of a machine-learning engine in a video analysis system</title><date>2016-01-12</date><risdate>2016</risdate><abstract>A machine-learning engine is disclosed that is configured to recognize and learn behaviors, as well as to identify and distinguish between normal and abnormal behavior within a scene, by analyzing movements and/or activities (or absence of such) over time. The machine-learning engine may be configured to evaluate a sequence of primitive events and associated kinematic data generated for an object depicted in a sequence of video frames and a related vector representation. The vector representation is generated from a primitive event symbol stream and a phase space symbol stream, and the streams describe actions of the objects depicted in the sequence of video frames.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9235752B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Semantic representation module of a machine-learning engine in a video analysis system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A12%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GOTTUMUKKAL%20RAJKIRAN%20K&rft.date=2016-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9235752B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |