Stable support for Fischer-Tropsch catalyst
A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst suppor...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | JOTHIMURUGESAN KANDASWAMY |
description | A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9233358B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9233358B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9233358B13</originalsourceid><addsrcrecordid>eNrjZNAOLklMyklVKC4tKMgvKlFIyy9ScMssTs5ILdINKcovALIUkhNLEnMqi0t4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakl8aLClkbGxsamFk6ExEUoAJKApXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Stable support for Fischer-Tropsch catalyst</title><source>esp@cenet</source><creator>JOTHIMURUGESAN KANDASWAMY</creator><creatorcontrib>JOTHIMURUGESAN KANDASWAMY</creatorcontrib><description>A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.</description><language>eng</language><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY ; CHEMISTRY ; CRACKING HYDROCARBON OILS ; FUELS ; LUBRICANTS ; METALLURGY ; MINERAL WAXES ; PEAT ; PERFORMING OPERATIONS ; PETROLEUM, GAS OR COKE INDUSTRIES ; PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL ; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION ; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES ; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS ; REFORMING OF NAPHTHA ; TECHNICAL GASES CONTAINING CARBON MONOXIDE ; THEIR RELEVANT APPARATUS ; TRANSPORTING</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160112&DB=EPODOC&CC=US&NR=9233358B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160112&DB=EPODOC&CC=US&NR=9233358B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JOTHIMURUGESAN KANDASWAMY</creatorcontrib><title>Stable support for Fischer-Tropsch catalyst</title><description>A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.</description><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>CRACKING HYDROCARBON OILS</subject><subject>FUELS</subject><subject>LUBRICANTS</subject><subject>METALLURGY</subject><subject>MINERAL WAXES</subject><subject>PEAT</subject><subject>PERFORMING OPERATIONS</subject><subject>PETROLEUM, GAS OR COKE INDUSTRIES</subject><subject>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</subject><subject>PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION</subject><subject>RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES</subject><subject>REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS</subject><subject>REFORMING OF NAPHTHA</subject><subject>TECHNICAL GASES CONTAINING CARBON MONOXIDE</subject><subject>THEIR RELEVANT APPARATUS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAOLklMyklVKC4tKMgvKlFIyy9ScMssTs5ILdINKcovALIUkhNLEnMqi0t4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakl8aLClkbGxsamFk6ExEUoAJKApXA</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>JOTHIMURUGESAN KANDASWAMY</creator><scope>EVB</scope></search><sort><creationdate>20160112</creationdate><title>Stable support for Fischer-Tropsch catalyst</title><author>JOTHIMURUGESAN KANDASWAMY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9233358B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>CRACKING HYDROCARBON OILS</topic><topic>FUELS</topic><topic>LUBRICANTS</topic><topic>METALLURGY</topic><topic>MINERAL WAXES</topic><topic>PEAT</topic><topic>PERFORMING OPERATIONS</topic><topic>PETROLEUM, GAS OR COKE INDUSTRIES</topic><topic>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</topic><topic>PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION</topic><topic>RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES</topic><topic>REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS</topic><topic>REFORMING OF NAPHTHA</topic><topic>TECHNICAL GASES CONTAINING CARBON MONOXIDE</topic><topic>THEIR RELEVANT APPARATUS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>JOTHIMURUGESAN KANDASWAMY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JOTHIMURUGESAN KANDASWAMY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Stable support for Fischer-Tropsch catalyst</title><date>2016-01-12</date><risdate>2016</risdate><abstract>A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9233358B1 |
source | esp@cenet |
subjects | CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY CHEMISTRY CRACKING HYDROCARBON OILS FUELS LUBRICANTS METALLURGY MINERAL WAXES PEAT PERFORMING OPERATIONS PETROLEUM, GAS OR COKE INDUSTRIES PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS REFORMING OF NAPHTHA TECHNICAL GASES CONTAINING CARBON MONOXIDE THEIR RELEVANT APPARATUS TRANSPORTING |
title | Stable support for Fischer-Tropsch catalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JOTHIMURUGESAN%20KANDASWAMY&rft.date=2016-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9233358B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |