Stable support for Fischer-Tropsch catalyst

A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst suppor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: JOTHIMURUGESAN KANDASWAMY
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator JOTHIMURUGESAN KANDASWAMY
description A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9233358B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9233358B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9233358B13</originalsourceid><addsrcrecordid>eNrjZNAOLklMyklVKC4tKMgvKlFIyy9ScMssTs5ILdINKcovALIUkhNLEnMqi0t4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakl8aLClkbGxsamFk6ExEUoAJKApXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Stable support for Fischer-Tropsch catalyst</title><source>esp@cenet</source><creator>JOTHIMURUGESAN KANDASWAMY</creator><creatorcontrib>JOTHIMURUGESAN KANDASWAMY</creatorcontrib><description>A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.</description><language>eng</language><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY ; CHEMISTRY ; CRACKING HYDROCARBON OILS ; FUELS ; LUBRICANTS ; METALLURGY ; MINERAL WAXES ; PEAT ; PERFORMING OPERATIONS ; PETROLEUM, GAS OR COKE INDUSTRIES ; PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL ; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION ; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES ; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS ; REFORMING OF NAPHTHA ; TECHNICAL GASES CONTAINING CARBON MONOXIDE ; THEIR RELEVANT APPARATUS ; TRANSPORTING</subject><creationdate>2016</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160112&amp;DB=EPODOC&amp;CC=US&amp;NR=9233358B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20160112&amp;DB=EPODOC&amp;CC=US&amp;NR=9233358B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>JOTHIMURUGESAN KANDASWAMY</creatorcontrib><title>Stable support for Fischer-Tropsch catalyst</title><description>A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.</description><subject>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</subject><subject>CHEMISTRY</subject><subject>CRACKING HYDROCARBON OILS</subject><subject>FUELS</subject><subject>LUBRICANTS</subject><subject>METALLURGY</subject><subject>MINERAL WAXES</subject><subject>PEAT</subject><subject>PERFORMING OPERATIONS</subject><subject>PETROLEUM, GAS OR COKE INDUSTRIES</subject><subject>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</subject><subject>PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION</subject><subject>RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES</subject><subject>REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS</subject><subject>REFORMING OF NAPHTHA</subject><subject>TECHNICAL GASES CONTAINING CARBON MONOXIDE</subject><subject>THEIR RELEVANT APPARATUS</subject><subject>TRANSPORTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2016</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNAOLklMyklVKC4tKMgvKlFIyy9ScMssTs5ILdINKcovALIUkhNLEnMqi0t4GFjTEnOKU3mhNDeDgptriLOHbmpBfnxqcUFicmpeakl8aLClkbGxsamFk6ExEUoAJKApXA</recordid><startdate>20160112</startdate><enddate>20160112</enddate><creator>JOTHIMURUGESAN KANDASWAMY</creator><scope>EVB</scope></search><sort><creationdate>20160112</creationdate><title>Stable support for Fischer-Tropsch catalyst</title><author>JOTHIMURUGESAN KANDASWAMY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9233358B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2016</creationdate><topic>CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY</topic><topic>CHEMISTRY</topic><topic>CRACKING HYDROCARBON OILS</topic><topic>FUELS</topic><topic>LUBRICANTS</topic><topic>METALLURGY</topic><topic>MINERAL WAXES</topic><topic>PEAT</topic><topic>PERFORMING OPERATIONS</topic><topic>PETROLEUM, GAS OR COKE INDUSTRIES</topic><topic>PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL</topic><topic>PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION</topic><topic>RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES</topic><topic>REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS</topic><topic>REFORMING OF NAPHTHA</topic><topic>TECHNICAL GASES CONTAINING CARBON MONOXIDE</topic><topic>THEIR RELEVANT APPARATUS</topic><topic>TRANSPORTING</topic><toplevel>online_resources</toplevel><creatorcontrib>JOTHIMURUGESAN KANDASWAMY</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>JOTHIMURUGESAN KANDASWAMY</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Stable support for Fischer-Tropsch catalyst</title><date>2016-01-12</date><risdate>2016</risdate><abstract>A process has been developed for preparing a Fischer-Tropsch catalyst precursor and a Fischer-Tropsch catalyst made from the precursor. The process includes contacting a gamma alumina catalyst support material with a first solution containing a vanadium compound, to obtain a modified catalyst support material. The modified catalyst support material is calcined at a temperature of at least 500° C. The calcined modified catalyst support has a pore volume of at least 0.35 cc/g. The modified catalyst support is less soluble in acid solutions than an equivalent unmodified catalyst support. The modified catalyst support loses no more than 15% of its pore volume when exposed to water vapor. The modified catalyst support is contacted with a second solution which includes a precursor compound of an active cobalt catalyst component to obtain a catalyst precursor. The catalyst precursor is reduced to activate the catalyst precursor to obtain the Fischer-Tropsch catalyst. The catalyst has enhanced hydrothermal stability as measured by losing no more than 22% of its pore volume when exposed to water vapor.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9233358B1
source esp@cenet
subjects CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOIDCHEMISTRY
CHEMISTRY
CRACKING HYDROCARBON OILS
FUELS
LUBRICANTS
METALLURGY
MINERAL WAXES
PEAT
PERFORMING OPERATIONS
PETROLEUM, GAS OR COKE INDUSTRIES
PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVEHYDROGENATION, OLIGOMERISATION, POLYMERISATION
RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, ORGASES
REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS
REFORMING OF NAPHTHA
TECHNICAL GASES CONTAINING CARBON MONOXIDE
THEIR RELEVANT APPARATUS
TRANSPORTING
title Stable support for Fischer-Tropsch catalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=JOTHIMURUGESAN%20KANDASWAMY&rft.date=2016-01-12&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9233358B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true