Data item clustering and analysis
Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated ana...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | HARRIS MICHAEL KROSS MICHAEL GROSSMAN JACK SPRAGUE MATTHEW COHEN DAVID MENON PARVATHY BOROCHOFF ADAM THOMPSON JAMES FU BING JIE MA JASON BERLER STEVEN BOORTZ JULIA NEPOMNYASHCHIY ILYA SMALIY ALEX |
description | Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9202249B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9202249B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9202249B13</originalsourceid><addsrcrecordid>eNrjZFB0SSxJVMgsSc1VSM4pLS5JLcrMS1dIzEsB4sScyuLMYh4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEh8abGlkYGRkYulkaEyEEgAwwCVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Data item clustering and analysis</title><source>esp@cenet</source><creator>HARRIS MICHAEL ; KROSS MICHAEL ; GROSSMAN JACK ; SPRAGUE MATTHEW ; COHEN DAVID ; MENON PARVATHY ; BOROCHOFF ADAM ; THOMPSON JAMES ; FU BING JIE ; MA JASON ; BERLER STEVEN ; BOORTZ JULIA ; NEPOMNYASHCHIY ILYA ; SMALIY ALEX</creator><creatorcontrib>HARRIS MICHAEL ; KROSS MICHAEL ; GROSSMAN JACK ; SPRAGUE MATTHEW ; COHEN DAVID ; MENON PARVATHY ; BOROCHOFF ADAM ; THOMPSON JAMES ; FU BING JIE ; MA JASON ; BERLER STEVEN ; BOORTZ JULIA ; NEPOMNYASHCHIY ILYA ; SMALIY ALEX</creatorcontrib><description>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES ; PHYSICS ; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20151201&DB=EPODOC&CC=US&NR=9202249B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76517</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20151201&DB=EPODOC&CC=US&NR=9202249B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HARRIS MICHAEL</creatorcontrib><creatorcontrib>KROSS MICHAEL</creatorcontrib><creatorcontrib>GROSSMAN JACK</creatorcontrib><creatorcontrib>SPRAGUE MATTHEW</creatorcontrib><creatorcontrib>COHEN DAVID</creatorcontrib><creatorcontrib>MENON PARVATHY</creatorcontrib><creatorcontrib>BOROCHOFF ADAM</creatorcontrib><creatorcontrib>THOMPSON JAMES</creatorcontrib><creatorcontrib>FU BING JIE</creatorcontrib><creatorcontrib>MA JASON</creatorcontrib><creatorcontrib>BERLER STEVEN</creatorcontrib><creatorcontrib>BOORTZ JULIA</creatorcontrib><creatorcontrib>NEPOMNYASHCHIY ILYA</creatorcontrib><creatorcontrib>SMALIY ALEX</creatorcontrib><title>Data item clustering and analysis</title><description>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</subject><subject>PHYSICS</subject><subject>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB0SSxJVMgsSc1VSM4pLS5JLcrMS1dIzEsB4sScyuLMYh4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEh8abGlkYGRkYulkaEyEEgAwwCVQ</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>HARRIS MICHAEL</creator><creator>KROSS MICHAEL</creator><creator>GROSSMAN JACK</creator><creator>SPRAGUE MATTHEW</creator><creator>COHEN DAVID</creator><creator>MENON PARVATHY</creator><creator>BOROCHOFF ADAM</creator><creator>THOMPSON JAMES</creator><creator>FU BING JIE</creator><creator>MA JASON</creator><creator>BERLER STEVEN</creator><creator>BOORTZ JULIA</creator><creator>NEPOMNYASHCHIY ILYA</creator><creator>SMALIY ALEX</creator><scope>EVB</scope></search><sort><creationdate>20151201</creationdate><title>Data item clustering and analysis</title><author>HARRIS MICHAEL ; KROSS MICHAEL ; GROSSMAN JACK ; SPRAGUE MATTHEW ; COHEN DAVID ; MENON PARVATHY ; BOROCHOFF ADAM ; THOMPSON JAMES ; FU BING JIE ; MA JASON ; BERLER STEVEN ; BOORTZ JULIA ; NEPOMNYASHCHIY ILYA ; SMALIY ALEX</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9202249B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES</topic><topic>PHYSICS</topic><topic>SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR</topic><toplevel>online_resources</toplevel><creatorcontrib>HARRIS MICHAEL</creatorcontrib><creatorcontrib>KROSS MICHAEL</creatorcontrib><creatorcontrib>GROSSMAN JACK</creatorcontrib><creatorcontrib>SPRAGUE MATTHEW</creatorcontrib><creatorcontrib>COHEN DAVID</creatorcontrib><creatorcontrib>MENON PARVATHY</creatorcontrib><creatorcontrib>BOROCHOFF ADAM</creatorcontrib><creatorcontrib>THOMPSON JAMES</creatorcontrib><creatorcontrib>FU BING JIE</creatorcontrib><creatorcontrib>MA JASON</creatorcontrib><creatorcontrib>BERLER STEVEN</creatorcontrib><creatorcontrib>BOORTZ JULIA</creatorcontrib><creatorcontrib>NEPOMNYASHCHIY ILYA</creatorcontrib><creatorcontrib>SMALIY ALEX</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HARRIS MICHAEL</au><au>KROSS MICHAEL</au><au>GROSSMAN JACK</au><au>SPRAGUE MATTHEW</au><au>COHEN DAVID</au><au>MENON PARVATHY</au><au>BOROCHOFF ADAM</au><au>THOMPSON JAMES</au><au>FU BING JIE</au><au>MA JASON</au><au>BERLER STEVEN</au><au>BOORTZ JULIA</au><au>NEPOMNYASHCHIY ILYA</au><au>SMALIY ALEX</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Data item clustering and analysis</title><date>2015-12-01</date><risdate>2015</risdate><abstract>Embodiments of the present disclosure relate to a data analysis system that may automatically generate memory-efficient clustered data structures, automatically analyze those clustered data structures, and provide results of the automated analysis in an optimized way to an analyst. The automated analysis of the clustered data structures (also referred to herein as data clusters) may include an automated application of various criteria or rules so as to generate a compact, human-readable analysis of the data clusters. The human-readable analyzes (also referred to herein as "summaries" or "conclusions") of the data clusters may be organized into an interactive user interface so as to enable an analyst to quickly navigate among information associated with various data clusters and efficiently evaluate those data clusters in the context of, for example, a fraud investigation. Embodiments of the present disclosure also relate to automated scoring of the clustered data structures.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9202249B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FORADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORYOR FORECASTING PURPOSES PHYSICS SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE,COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTINGPURPOSES, NOT OTHERWISE PROVIDED FOR |
title | Data item clustering and analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A22%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HARRIS%20MICHAEL&rft.date=2015-12-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9202249B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |