Methods and systems for predictive engine evaluation, tuning, and replay of engine performance

Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive correspon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: YIP YUE KWEN JUSTIN, CHAN KA HOU, CHAN SIMON, SZETO KIT PANG
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator YIP YUE KWEN JUSTIN
CHAN KA HOU
CHAN SIMON
SZETO KIT PANG
description Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9135559B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9135559B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9135559B13</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbM4iPoP7wPqUEqHrori4qSulkdyUwPtS0jSQv_eIro7neWcs1bPK_LLm0QshtKcMoZE1kcKEcbp7CYQpHOyYOJ-5Oy8FJRHcdIVnyoi9DyTtz8xIC6HgUVjq1aW-4TdlxtF59P9eNkj-BYpsIYgt49bU1Z1XTeHsvpDeQPQozxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><source>esp@cenet</source><creator>YIP YUE KWEN JUSTIN ; CHAN KA HOU ; CHAN SIMON ; SZETO KIT PANG</creator><creatorcontrib>YIP YUE KWEN JUSTIN ; CHAN KA HOU ; CHAN SIMON ; SZETO KIT PANG</creatorcontrib><description>Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150915&amp;DB=EPODOC&amp;CC=US&amp;NR=9135559B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150915&amp;DB=EPODOC&amp;CC=US&amp;NR=9135559B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YIP YUE KWEN JUSTIN</creatorcontrib><creatorcontrib>CHAN KA HOU</creatorcontrib><creatorcontrib>CHAN SIMON</creatorcontrib><creatorcontrib>SZETO KIT PANG</creatorcontrib><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><description>Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbM4iPoP7wPqUEqHrori4qSulkdyUwPtS0jSQv_eIro7neWcs1bPK_LLm0QshtKcMoZE1kcKEcbp7CYQpHOyYOJ-5Oy8FJRHcdIVnyoi9DyTtz8xIC6HgUVjq1aW-4TdlxtF59P9eNkj-BYpsIYgt49bU1Z1XTeHsvpDeQPQozxs</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>YIP YUE KWEN JUSTIN</creator><creator>CHAN KA HOU</creator><creator>CHAN SIMON</creator><creator>SZETO KIT PANG</creator><scope>EVB</scope></search><sort><creationdate>20150915</creationdate><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><author>YIP YUE KWEN JUSTIN ; CHAN KA HOU ; CHAN SIMON ; SZETO KIT PANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9135559B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YIP YUE KWEN JUSTIN</creatorcontrib><creatorcontrib>CHAN KA HOU</creatorcontrib><creatorcontrib>CHAN SIMON</creatorcontrib><creatorcontrib>SZETO KIT PANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YIP YUE KWEN JUSTIN</au><au>CHAN KA HOU</au><au>CHAN SIMON</au><au>SZETO KIT PANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><date>2015-09-15</date><risdate>2015</risdate><abstract>Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9135559B1
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Methods and systems for predictive engine evaluation, tuning, and replay of engine performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YIP%20YUE%20KWEN%20JUSTIN&rft.date=2015-09-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9135559B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true