Methods and systems for predictive engine evaluation, tuning, and replay of engine performance
Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive correspon...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | YIP YUE KWEN JUSTIN CHAN KA HOU CHAN SIMON SZETO KIT PANG |
description | Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9135559B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9135559B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9135559B13</originalsourceid><addsrcrecordid>eNqNjLEKwjAURbM4iPoP7wPqUEqHrori4qSulkdyUwPtS0jSQv_eIro7neWcs1bPK_LLm0QshtKcMoZE1kcKEcbp7CYQpHOyYOJ-5Oy8FJRHcdIVnyoi9DyTtz8xIC6HgUVjq1aW-4TdlxtF59P9eNkj-BYpsIYgt49bU1Z1XTeHsvpDeQPQozxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><source>esp@cenet</source><creator>YIP YUE KWEN JUSTIN ; CHAN KA HOU ; CHAN SIMON ; SZETO KIT PANG</creator><creatorcontrib>YIP YUE KWEN JUSTIN ; CHAN KA HOU ; CHAN SIMON ; SZETO KIT PANG</creatorcontrib><description>Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150915&DB=EPODOC&CC=US&NR=9135559B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76419</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150915&DB=EPODOC&CC=US&NR=9135559B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>YIP YUE KWEN JUSTIN</creatorcontrib><creatorcontrib>CHAN KA HOU</creatorcontrib><creatorcontrib>CHAN SIMON</creatorcontrib><creatorcontrib>SZETO KIT PANG</creatorcontrib><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><description>Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjLEKwjAURbM4iPoP7wPqUEqHrori4qSulkdyUwPtS0jSQv_eIro7neWcs1bPK_LLm0QshtKcMoZE1kcKEcbp7CYQpHOyYOJ-5Oy8FJRHcdIVnyoi9DyTtz8xIC6HgUVjq1aW-4TdlxtF59P9eNkj-BYpsIYgt49bU1Z1XTeHsvpDeQPQozxs</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>YIP YUE KWEN JUSTIN</creator><creator>CHAN KA HOU</creator><creator>CHAN SIMON</creator><creator>SZETO KIT PANG</creator><scope>EVB</scope></search><sort><creationdate>20150915</creationdate><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><author>YIP YUE KWEN JUSTIN ; CHAN KA HOU ; CHAN SIMON ; SZETO KIT PANG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9135559B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>YIP YUE KWEN JUSTIN</creatorcontrib><creatorcontrib>CHAN KA HOU</creatorcontrib><creatorcontrib>CHAN SIMON</creatorcontrib><creatorcontrib>SZETO KIT PANG</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>YIP YUE KWEN JUSTIN</au><au>CHAN KA HOU</au><au>CHAN SIMON</au><au>SZETO KIT PANG</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Methods and systems for predictive engine evaluation, tuning, and replay of engine performance</title><date>2015-09-15</date><risdate>2015</risdate><abstract>Disclosed are methods and systems of creating, evaluating, and tuning a predictive engine for machine learning, including steps to deploy the predictive engine with an initial parameter set; receive queries to the deployed engine variant and in response, generate predicted results; receive corresponding actual results; associate the queries, the predicted results, and the actual results with a replay tag; evaluate the performance of the deployed engine variant; generate a new engine parameter set based on tuning of one or more parameters of the initial engine parameter set, according to the evaluation results; deploy the new engine variant to replace the initial engine variant; receive a replay request from an operator specifying the currently or a previously deployed engine variant; and in response to the replay request, replay at least one of the queries, the corresponding predicted results, the actual results, and the evaluation results.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9135559B1 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING PHYSICS |
title | Methods and systems for predictive engine evaluation, tuning, and replay of engine performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A36%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=YIP%20YUE%20KWEN%20JUSTIN&rft.date=2015-09-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9135559B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |