Stent marker detection using a learning based classifier in medical imaging

Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: POHL THOMAS, DURLAK PETER, LU XIAOGUANG, CHEN TERRENCE, COMANICIU DORIN
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator POHL THOMAS
DURLAK PETER
LU XIAOGUANG
CHEN TERRENCE
COMANICIU DORIN
description Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9119573B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9119573B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9119573B23</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuFtLES9w1zAIgaRtIoiWEbrMO7-CYO7k7Cz3t8IHsDqveJbultboIUS5xcyBRT4IqPS20QHYorgrN99siGQj2wmvcxWlBKCeI4kiYfZrN2i52jY_LpydDnfT9ctprGDTeyhKN2jbaqq2R_q467-g3wA6mM1Fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Stent marker detection using a learning based classifier in medical imaging</title><source>esp@cenet</source><creator>POHL THOMAS ; DURLAK PETER ; LU XIAOGUANG ; CHEN TERRENCE ; COMANICIU DORIN</creator><creatorcontrib>POHL THOMAS ; DURLAK PETER ; LU XIAOGUANG ; CHEN TERRENCE ; COMANICIU DORIN</creatorcontrib><description>Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.</description><language>eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150901&amp;DB=EPODOC&amp;CC=US&amp;NR=9119573B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20150901&amp;DB=EPODOC&amp;CC=US&amp;NR=9119573B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>POHL THOMAS</creatorcontrib><creatorcontrib>DURLAK PETER</creatorcontrib><creatorcontrib>LU XIAOGUANG</creatorcontrib><creatorcontrib>CHEN TERRENCE</creatorcontrib><creatorcontrib>COMANICIU DORIN</creatorcontrib><title>Stent marker detection using a learning based classifier in medical imaging</title><description>Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuFtLES9w1zAIgaRtIoiWEbrMO7-CYO7k7Cz3t8IHsDqveJbultboIUS5xcyBRT4IqPS20QHYorgrN99siGQj2wmvcxWlBKCeI4kiYfZrN2i52jY_LpydDnfT9ctprGDTeyhKN2jbaqq2R_q467-g3wA6mM1Fg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>POHL THOMAS</creator><creator>DURLAK PETER</creator><creator>LU XIAOGUANG</creator><creator>CHEN TERRENCE</creator><creator>COMANICIU DORIN</creator><scope>EVB</scope></search><sort><creationdate>20150901</creationdate><title>Stent marker detection using a learning based classifier in medical imaging</title><author>POHL THOMAS ; DURLAK PETER ; LU XIAOGUANG ; CHEN TERRENCE ; COMANICIU DORIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9119573B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>POHL THOMAS</creatorcontrib><creatorcontrib>DURLAK PETER</creatorcontrib><creatorcontrib>LU XIAOGUANG</creatorcontrib><creatorcontrib>CHEN TERRENCE</creatorcontrib><creatorcontrib>COMANICIU DORIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>POHL THOMAS</au><au>DURLAK PETER</au><au>LU XIAOGUANG</au><au>CHEN TERRENCE</au><au>COMANICIU DORIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Stent marker detection using a learning based classifier in medical imaging</title><date>2015-09-01</date><risdate>2015</risdate><abstract>Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US9119573B2
source esp@cenet
subjects DIAGNOSIS
HUMAN NECESSITIES
HYGIENE
IDENTIFICATION
MEDICAL OR VETERINARY SCIENCE
SURGERY
title Stent marker detection using a learning based classifier in medical imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=POHL%20THOMAS&rft.date=2015-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9119573B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true