Stent marker detection using a learning based classifier in medical imaging
Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | POHL THOMAS DURLAK PETER LU XIAOGUANG CHEN TERRENCE COMANICIU DORIN |
description | Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US9119573B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US9119573B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US9119573B23</originalsourceid><addsrcrecordid>eNqNyjEKwkAQRuFtLES9w1zAIgaRtIoiWEbrMO7-CYO7k7Cz3t8IHsDqveJbultboIUS5xcyBRT4IqPS20QHYorgrN99siGQj2wmvcxWlBKCeI4kiYfZrN2i52jY_LpydDnfT9ctprGDTeyhKN2jbaqq2R_q467-g3wA6mM1Fg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Stent marker detection using a learning based classifier in medical imaging</title><source>esp@cenet</source><creator>POHL THOMAS ; DURLAK PETER ; LU XIAOGUANG ; CHEN TERRENCE ; COMANICIU DORIN</creator><creatorcontrib>POHL THOMAS ; DURLAK PETER ; LU XIAOGUANG ; CHEN TERRENCE ; COMANICIU DORIN</creatorcontrib><description>Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.</description><language>eng</language><subject>DIAGNOSIS ; HUMAN NECESSITIES ; HYGIENE ; IDENTIFICATION ; MEDICAL OR VETERINARY SCIENCE ; SURGERY</subject><creationdate>2015</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150901&DB=EPODOC&CC=US&NR=9119573B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20150901&DB=EPODOC&CC=US&NR=9119573B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>POHL THOMAS</creatorcontrib><creatorcontrib>DURLAK PETER</creatorcontrib><creatorcontrib>LU XIAOGUANG</creatorcontrib><creatorcontrib>CHEN TERRENCE</creatorcontrib><creatorcontrib>COMANICIU DORIN</creatorcontrib><title>Stent marker detection using a learning based classifier in medical imaging</title><description>Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.</description><subject>DIAGNOSIS</subject><subject>HUMAN NECESSITIES</subject><subject>HYGIENE</subject><subject>IDENTIFICATION</subject><subject>MEDICAL OR VETERINARY SCIENCE</subject><subject>SURGERY</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2015</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyjEKwkAQRuFtLES9w1zAIgaRtIoiWEbrMO7-CYO7k7Cz3t8IHsDqveJbultboIUS5xcyBRT4IqPS20QHYorgrN99siGQj2wmvcxWlBKCeI4kiYfZrN2i52jY_LpydDnfT9ctprGDTeyhKN2jbaqq2R_q467-g3wA6mM1Fg</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>POHL THOMAS</creator><creator>DURLAK PETER</creator><creator>LU XIAOGUANG</creator><creator>CHEN TERRENCE</creator><creator>COMANICIU DORIN</creator><scope>EVB</scope></search><sort><creationdate>20150901</creationdate><title>Stent marker detection using a learning based classifier in medical imaging</title><author>POHL THOMAS ; DURLAK PETER ; LU XIAOGUANG ; CHEN TERRENCE ; COMANICIU DORIN</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US9119573B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2015</creationdate><topic>DIAGNOSIS</topic><topic>HUMAN NECESSITIES</topic><topic>HYGIENE</topic><topic>IDENTIFICATION</topic><topic>MEDICAL OR VETERINARY SCIENCE</topic><topic>SURGERY</topic><toplevel>online_resources</toplevel><creatorcontrib>POHL THOMAS</creatorcontrib><creatorcontrib>DURLAK PETER</creatorcontrib><creatorcontrib>LU XIAOGUANG</creatorcontrib><creatorcontrib>CHEN TERRENCE</creatorcontrib><creatorcontrib>COMANICIU DORIN</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>POHL THOMAS</au><au>DURLAK PETER</au><au>LU XIAOGUANG</au><au>CHEN TERRENCE</au><au>COMANICIU DORIN</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Stent marker detection using a learning based classifier in medical imaging</title><date>2015-09-01</date><risdate>2015</risdate><abstract>Stent marker detection is automatically performed. Stent markers in fluoroscopic images or other markers in other types of imaging are detected using a machine-learnt classifier. Hierarchal classification may be used, such as detecting individual markers with one classifier and then detecting groups of markers (e.g., a pair) with a joint classifier. The detection may be performed in a single image and without user indication of a location.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US9119573B2 |
source | esp@cenet |
subjects | DIAGNOSIS HUMAN NECESSITIES HYGIENE IDENTIFICATION MEDICAL OR VETERINARY SCIENCE SURGERY |
title | Stent marker detection using a learning based classifier in medical imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=POHL%20THOMAS&rft.date=2015-09-01&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS9119573B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |