Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material
The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | BESSHO KUNIHIKO SHIMADA TAKASHI HONDA KAZUYOSHI |
description | The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34. The film formation is performed in a state where the opening surface 14 of the evaporation source 19 holding the heated film formation material is located close to the substrate 21 while evacuating the evaporation chamber 16 and the film forming chamber 17 without shutting off communication between the evaporation chamber 16 and the film forming chamber 17 by the conductance variable structure 34. Next, the evaporation of the film formation material is suppressed by introducing a nonreactive gas to the evaporation chamber 16 and the film forming chamber 17 to adjust pressure in each chamber to predetermined pressure or more. Then, the evaporation source 19 is moved by the moving mechanism 35 such that the opening surface 14 is located away from the substrate 21. The conductance variable structure is activated to shut off the communication between these chambers, and the film formation material is cooled while continuously introducing the nonreactive gas to the evaporation chamber 16. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8865258B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8865258B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8865258B23</originalsourceid><addsrcrecordid>eNqNjDEOwjAMRbswIOAOvgBLUVFnEIiFCZgrK3FIpNaJYkeI25MiDsD0__DeWzbTldRHC9HBhFwcGi058BPUBwYXxglePhgPUlLKJEIChZlMvZjfIAZV6WsgW7CUogQNkecigsSSDdX0zOC4bhYOR6HNb1cNnE_342VbtYEkoSEmHR63vt93bdcf2t0fyAdmyELa</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material</title><source>esp@cenet</source><creator>BESSHO KUNIHIKO ; SHIMADA TAKASHI ; HONDA KAZUYOSHI</creator><creatorcontrib>BESSHO KUNIHIKO ; SHIMADA TAKASHI ; HONDA KAZUYOSHI</creatorcontrib><description>The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34. The film formation is performed in a state where the opening surface 14 of the evaporation source 19 holding the heated film formation material is located close to the substrate 21 while evacuating the evaporation chamber 16 and the film forming chamber 17 without shutting off communication between the evaporation chamber 16 and the film forming chamber 17 by the conductance variable structure 34. Next, the evaporation of the film formation material is suppressed by introducing a nonreactive gas to the evaporation chamber 16 and the film forming chamber 17 to adjust pressure in each chamber to predetermined pressure or more. Then, the evaporation source 19 is moved by the moving mechanism 35 such that the opening surface 14 is located away from the substrate 21. The conductance variable structure is activated to shut off the communication between these chambers, and the film formation material is cooled while continuously introducing the nonreactive gas to the evaporation chamber 16.</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20141021&DB=EPODOC&CC=US&NR=8865258B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20141021&DB=EPODOC&CC=US&NR=8865258B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BESSHO KUNIHIKO</creatorcontrib><creatorcontrib>SHIMADA TAKASHI</creatorcontrib><creatorcontrib>HONDA KAZUYOSHI</creatorcontrib><title>Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material</title><description>The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34. The film formation is performed in a state where the opening surface 14 of the evaporation source 19 holding the heated film formation material is located close to the substrate 21 while evacuating the evaporation chamber 16 and the film forming chamber 17 without shutting off communication between the evaporation chamber 16 and the film forming chamber 17 by the conductance variable structure 34. Next, the evaporation of the film formation material is suppressed by introducing a nonreactive gas to the evaporation chamber 16 and the film forming chamber 17 to adjust pressure in each chamber to predetermined pressure or more. Then, the evaporation source 19 is moved by the moving mechanism 35 such that the opening surface 14 is located away from the substrate 21. The conductance variable structure is activated to shut off the communication between these chambers, and the film formation material is cooled while continuously introducing the nonreactive gas to the evaporation chamber 16.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjDEOwjAMRbswIOAOvgBLUVFnEIiFCZgrK3FIpNaJYkeI25MiDsD0__DeWzbTldRHC9HBhFwcGi058BPUBwYXxglePhgPUlLKJEIChZlMvZjfIAZV6WsgW7CUogQNkecigsSSDdX0zOC4bhYOR6HNb1cNnE_342VbtYEkoSEmHR63vt93bdcf2t0fyAdmyELa</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>BESSHO KUNIHIKO</creator><creator>SHIMADA TAKASHI</creator><creator>HONDA KAZUYOSHI</creator><scope>EVB</scope></search><sort><creationdate>20141021</creationdate><title>Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material</title><author>BESSHO KUNIHIKO ; SHIMADA TAKASHI ; HONDA KAZUYOSHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8865258B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>BESSHO KUNIHIKO</creatorcontrib><creatorcontrib>SHIMADA TAKASHI</creatorcontrib><creatorcontrib>HONDA KAZUYOSHI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BESSHO KUNIHIKO</au><au>SHIMADA TAKASHI</au><au>HONDA KAZUYOSHI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material</title><date>2014-10-21</date><risdate>2014</risdate><abstract>The present invention provides a thin film manufacturing method which realizes stable, highly-efficient film formation using a nozzle-type evaporation source while avoiding unnecessary scattering and deposition of a film formation material after the termination of the film formation. Used is a film forming apparatus including: an evaporation chamber 16; a film forming chamber 17 in which a substrate 21 is provided; an evaporation source 19 holding a film formation material 15 and including an opening surface 14; a moving mechanism 35 configured to cause the evaporation source 19 to move; and a conductance variable structure 34. The film formation is performed in a state where the opening surface 14 of the evaporation source 19 holding the heated film formation material is located close to the substrate 21 while evacuating the evaporation chamber 16 and the film forming chamber 17 without shutting off communication between the evaporation chamber 16 and the film forming chamber 17 by the conductance variable structure 34. Next, the evaporation of the film formation material is suppressed by introducing a nonreactive gas to the evaporation chamber 16 and the film forming chamber 17 to adjust pressure in each chamber to predetermined pressure or more. Then, the evaporation source 19 is moved by the moving mechanism 35 such that the opening surface 14 is located away from the substrate 21. The conductance variable structure is activated to shut off the communication between these chambers, and the film formation material is cooled while continuously introducing the nonreactive gas to the evaporation chamber 16.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US8865258B2 |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSIONOF CHEMICAL INTO ELECTRICAL ENERGY SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | Method of manufacturing thin film which suppresses unnecessary scattering and deposition of a source material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BESSHO%20KUNIHIKO&rft.date=2014-10-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8865258B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |