System and method employing a self-organizing map load feature database to identify electric load types of different electric loads

A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SHARMA SANTOSH K, LU BIN, HARLEY RONALD G, DU LIANG, MADANE MAYURA A, ZAMBARE PRACHI, YANG YI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SHARMA SANTOSH K
LU BIN
HARLEY RONALD G
DU LIANG
MADANE MAYURA A
ZAMBARE PRACHI
YANG YI
description A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8756181B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8756181B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8756181B23</originalsourceid><addsrcrecordid>eNqNyr0OAUEUhuFtFIJ7ODewxRI_NSH6pd4cO9-sSeYvM0cxWjeO0OhUb_LmGVePtmSBI_aKHOQaFMFFG4rxAzFlWF2HNLA39_dxHMkGVqTBcksgxcIXziAJZBS8GF0IFr0k03-olIhMQZMyWiO9zC_I02qk2WbMvp1UdNifdscaMXTIkXt4SHduN-vlqtk02_niD_IEqj9KSQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>System and method employing a self-organizing map load feature database to identify electric load types of different electric loads</title><source>esp@cenet</source><creator>SHARMA SANTOSH K ; LU BIN ; HARLEY RONALD G ; DU LIANG ; MADANE MAYURA A ; ZAMBARE PRACHI ; YANG YI</creator><creatorcontrib>SHARMA SANTOSH K ; LU BIN ; HARLEY RONALD G ; DU LIANG ; MADANE MAYURA A ; ZAMBARE PRACHI ; YANG YI</creatorcontrib><description>A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ONOTHER TECHNOLOGY AREAS ; PHYSICS ; SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORKOPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FORIMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION,DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140617&amp;DB=EPODOC&amp;CC=US&amp;NR=8756181B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140617&amp;DB=EPODOC&amp;CC=US&amp;NR=8756181B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SHARMA SANTOSH K</creatorcontrib><creatorcontrib>LU BIN</creatorcontrib><creatorcontrib>HARLEY RONALD G</creatorcontrib><creatorcontrib>DU LIANG</creatorcontrib><creatorcontrib>MADANE MAYURA A</creatorcontrib><creatorcontrib>ZAMBARE PRACHI</creatorcontrib><creatorcontrib>YANG YI</creatorcontrib><title>System and method employing a self-organizing map load feature database to identify electric load types of different electric loads</title><description>A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ONOTHER TECHNOLOGY AREAS</subject><subject>PHYSICS</subject><subject>SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORKOPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FORIMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION,DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyr0OAUEUhuFtFIJ7ODewxRI_NSH6pd4cO9-sSeYvM0cxWjeO0OhUb_LmGVePtmSBI_aKHOQaFMFFG4rxAzFlWF2HNLA39_dxHMkGVqTBcksgxcIXziAJZBS8GF0IFr0k03-olIhMQZMyWiO9zC_I02qk2WbMvp1UdNifdscaMXTIkXt4SHduN-vlqtk02_niD_IEqj9KSQ</recordid><startdate>20140617</startdate><enddate>20140617</enddate><creator>SHARMA SANTOSH K</creator><creator>LU BIN</creator><creator>HARLEY RONALD G</creator><creator>DU LIANG</creator><creator>MADANE MAYURA A</creator><creator>ZAMBARE PRACHI</creator><creator>YANG YI</creator><scope>EVB</scope></search><sort><creationdate>20140617</creationdate><title>System and method employing a self-organizing map load feature database to identify electric load types of different electric loads</title><author>SHARMA SANTOSH K ; LU BIN ; HARLEY RONALD G ; DU LIANG ; MADANE MAYURA A ; ZAMBARE PRACHI ; YANG YI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8756181B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ONOTHER TECHNOLOGY AREAS</topic><topic>PHYSICS</topic><topic>SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORKOPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FORIMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION,DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><toplevel>online_resources</toplevel><creatorcontrib>SHARMA SANTOSH K</creatorcontrib><creatorcontrib>LU BIN</creatorcontrib><creatorcontrib>HARLEY RONALD G</creatorcontrib><creatorcontrib>DU LIANG</creatorcontrib><creatorcontrib>MADANE MAYURA A</creatorcontrib><creatorcontrib>ZAMBARE PRACHI</creatorcontrib><creatorcontrib>YANG YI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SHARMA SANTOSH K</au><au>LU BIN</au><au>HARLEY RONALD G</au><au>DU LIANG</au><au>MADANE MAYURA A</au><au>ZAMBARE PRACHI</au><au>YANG YI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>System and method employing a self-organizing map load feature database to identify electric load types of different electric loads</title><date>2014-06-17</date><risdate>2014</risdate><abstract>A method identifies electric load types of a plurality of different electric loads. The method includes providing a self-organizing map load feature database of a plurality of different electric load types and a plurality of neurons, each of the load types corresponding to a number of the neurons; employing a weight vector for each of the neurons; sensing a voltage signal and a current signal for each of the loads; determining a load feature vector including at least four different load features from the sensed voltage signal and the sensed current signal for a corresponding one of the loads; and identifying by a processor one of the load types by relating the load feature vector to the neurons of the database by identifying the weight vector of one of the neurons corresponding to the one of the load types that is a minimal distance to the load feature vector.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US8756181B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ONOTHER TECHNOLOGY AREAS
PHYSICS
SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORKOPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FORIMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION,DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
title System and method employing a self-organizing map load feature database to identify electric load types of different electric loads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A57%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SHARMA%20SANTOSH%20K&rft.date=2014-06-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8756181B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true