Acoustic model adaptation using splines

Described is a technology by which a speech recognizer is adapted to perform in noisy environments using linear spline interpolation to approximate the nonlinear relationship between clean speech, noise, and noisy speech. Linear spline parameters that minimize the error the between predicted noisy f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: SELTZER MICHAEL LEWIS, ACERO ALEJANDRO, KALGAONKAR KAUSTUBH PRAKASH
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator SELTZER MICHAEL LEWIS
ACERO ALEJANDRO
KALGAONKAR KAUSTUBH PRAKASH
description Described is a technology by which a speech recognizer is adapted to perform in noisy environments using linear spline interpolation to approximate the nonlinear relationship between clean speech, noise, and noisy speech. Linear spline parameters that minimize the error the between predicted noisy features and actual noisy features are learned from training data, along with variance data that reflect regression errors. Also described is compensating for linear channel distortion and updating noise and channel parameters during speech recognition decoding.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8700394B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8700394B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8700394B23</originalsourceid><addsrcrecordid>eNrjZFB3TM4vLS7JTFbIzU9JzVFITEksKEksyczPUygtzsxLVyguyMnMSy3mYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxocEW5gYGxpYmTkbGRCgBAG6FJ_M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Acoustic model adaptation using splines</title><source>esp@cenet</source><creator>SELTZER MICHAEL LEWIS ; ACERO ALEJANDRO ; KALGAONKAR KAUSTUBH PRAKASH</creator><creatorcontrib>SELTZER MICHAEL LEWIS ; ACERO ALEJANDRO ; KALGAONKAR KAUSTUBH PRAKASH</creatorcontrib><description>Described is a technology by which a speech recognizer is adapted to perform in noisy environments using linear spline interpolation to approximate the nonlinear relationship between clean speech, noise, and noisy speech. Linear spline parameters that minimize the error the between predicted noisy features and actual noisy features are learned from training data, along with variance data that reflect regression errors. Also described is compensating for linear channel distortion and updating noise and channel parameters during speech recognition decoding.</description><language>eng</language><subject>ACOUSTICS ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140415&amp;DB=EPODOC&amp;CC=US&amp;NR=8700394B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76294</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140415&amp;DB=EPODOC&amp;CC=US&amp;NR=8700394B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>SELTZER MICHAEL LEWIS</creatorcontrib><creatorcontrib>ACERO ALEJANDRO</creatorcontrib><creatorcontrib>KALGAONKAR KAUSTUBH PRAKASH</creatorcontrib><title>Acoustic model adaptation using splines</title><description>Described is a technology by which a speech recognizer is adapted to perform in noisy environments using linear spline interpolation to approximate the nonlinear relationship between clean speech, noise, and noisy speech. Linear spline parameters that minimize the error the between predicted noisy features and actual noisy features are learned from training data, along with variance data that reflect regression errors. Also described is compensating for linear channel distortion and updating noise and channel parameters during speech recognition decoding.</description><subject>ACOUSTICS</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3TM4vLS7JTFbIzU9JzVFITEksKEksyczPUygtzsxLVyguyMnMSy3mYWBNS8wpTuWF0twMCm6uIc4euqkF-fGpxQWJyal5qSXxocEW5gYGxpYmTkbGRCgBAG6FJ_M</recordid><startdate>20140415</startdate><enddate>20140415</enddate><creator>SELTZER MICHAEL LEWIS</creator><creator>ACERO ALEJANDRO</creator><creator>KALGAONKAR KAUSTUBH PRAKASH</creator><scope>EVB</scope></search><sort><creationdate>20140415</creationdate><title>Acoustic model adaptation using splines</title><author>SELTZER MICHAEL LEWIS ; ACERO ALEJANDRO ; KALGAONKAR KAUSTUBH PRAKASH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8700394B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ACOUSTICS</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>SELTZER MICHAEL LEWIS</creatorcontrib><creatorcontrib>ACERO ALEJANDRO</creatorcontrib><creatorcontrib>KALGAONKAR KAUSTUBH PRAKASH</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>SELTZER MICHAEL LEWIS</au><au>ACERO ALEJANDRO</au><au>KALGAONKAR KAUSTUBH PRAKASH</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Acoustic model adaptation using splines</title><date>2014-04-15</date><risdate>2014</risdate><abstract>Described is a technology by which a speech recognizer is adapted to perform in noisy environments using linear spline interpolation to approximate the nonlinear relationship between clean speech, noise, and noisy speech. Linear spline parameters that minimize the error the between predicted noisy features and actual noisy features are learned from training data, along with variance data that reflect regression errors. Also described is compensating for linear channel distortion and updating noise and channel parameters during speech recognition decoding.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US8700394B2
source esp@cenet
subjects ACOUSTICS
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Acoustic model adaptation using splines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=SELTZER%20MICHAEL%20LEWIS&rft.date=2014-04-15&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8700394B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true