Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same

A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GOYA SANEYUKI, NAKANO YOUJI, SATAKE KOUJI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GOYA SANEYUKI
NAKANO YOUJI
SATAKE KOUJI
description A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8633378B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8633378B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8633378B23</originalsourceid><addsrcrecordid>eNqNjTEOgkAQRWksjHqHOQA2bqLUEo2NlVqTye6sbAI7G2bgFB5aQAtLq__z_0veMntdSWt2wB6EVEN8guXoggaOAp478KFpwVFimcccUs3KAzeKwY7HECzlgNFB6tj1doKmakkk_90wJexQe5lhJVFoP_JJI9jSOlt4bIQ231xlcD7dy8t2tFckCS1F0upxK_bGmENx3Jk_kDf33E4u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same</title><source>esp@cenet</source><creator>GOYA SANEYUKI ; NAKANO YOUJI ; SATAKE KOUJI</creator><creatorcontrib>GOYA SANEYUKI ; NAKANO YOUJI ; SATAKE KOUJI</creatorcontrib><description>A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).</description><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><creationdate>2014</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140121&amp;DB=EPODOC&amp;CC=US&amp;NR=8633378B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,309,781,886,25566,76549</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20140121&amp;DB=EPODOC&amp;CC=US&amp;NR=8633378B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GOYA SANEYUKI</creatorcontrib><creatorcontrib>NAKANO YOUJI</creatorcontrib><creatorcontrib>SATAKE KOUJI</creatorcontrib><title>Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same</title><description>A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2014</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNjTEOgkAQRWksjHqHOQA2bqLUEo2NlVqTye6sbAI7G2bgFB5aQAtLq__z_0veMntdSWt2wB6EVEN8guXoggaOAp478KFpwVFimcccUs3KAzeKwY7HECzlgNFB6tj1doKmakkk_90wJexQe5lhJVFoP_JJI9jSOlt4bIQ231xlcD7dy8t2tFckCS1F0upxK_bGmENx3Jk_kDf33E4u</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>GOYA SANEYUKI</creator><creator>NAKANO YOUJI</creator><creator>SATAKE KOUJI</creator><scope>EVB</scope></search><sort><creationdate>20140121</creationdate><title>Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same</title><author>GOYA SANEYUKI ; NAKANO YOUJI ; SATAKE KOUJI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8633378B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2014</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><toplevel>online_resources</toplevel><creatorcontrib>GOYA SANEYUKI</creatorcontrib><creatorcontrib>NAKANO YOUJI</creatorcontrib><creatorcontrib>SATAKE KOUJI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GOYA SANEYUKI</au><au>NAKANO YOUJI</au><au>SATAKE KOUJI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same</title><date>2014-01-21</date><risdate>2014</risdate><abstract>A photovoltaic device having a high conversion efficiency is produced in a stable manner. The conditions for film deposition of a microcrystalline silicon photovoltaic layer (4) in a photovoltaic device are set based on the Raman peak ratio within a Raman spectrum obtained at the substrate (1) side of the microcrystalline silicon layer (4), and the Raman peak ratio within a Raman spectrum obtained at the opposite side to the substrate (1).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US8633378B2
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC
GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGYGENERATION, TRANSMISSION OR DISTRIBUTION
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE
title Method of setting conditions for film deposition, photovoltaic device, and production process, production apparatus and test method for same
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T12%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GOYA%20SANEYUKI&rft.date=2014-01-21&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8633378B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true