Blood cell barrier for a lateral flow device

A lateral flow device for analyzing a whole blood sample is provided. More specifically, the lateral flow device contains a porous membrane that defines a barrier zone for separating red blood cells from blood plasma (includes plasma in which clotting factors haven been removed), which may then flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: MACDONALD J. GAVIN, SMITH MOLLY K
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator MACDONALD J. GAVIN
SMITH MOLLY K
description A lateral flow device for analyzing a whole blood sample is provided. More specifically, the lateral flow device contains a porous membrane that defines a barrier zone for separating red blood cells from blood plasma (includes plasma in which clotting factors haven been removed), which may then flow to a subsequent detection zone for analysis. The barrier zone is formed from a blood cell barrier composition that includes an unsaturated aliphatic fatty acid or an ester thereof. Without intending to be limited by theory, the present inventors believe such unsaturated aliphatic fatty acid molecules undergo autoxidation in the presence of air and hemoglobin to release peroxides (e.g., hydrogen peroxide) via oxidative saturation of double bonds. In turn, the released peroxides are believed to induce the formation of echinocytes or crenated blood cells. The crenated red blood cells are distorted in shape and less flexible and malleable than normal red blood cells, making them less able to penetrate into the pores of the porous membrane of the lateral flow device. Consequently, the stiffer, less flexible cells cannot move easily into the porous and become trapped at the surface of the membrane, while the liquid components of the sample flow and penetrate through the membrane to the detection zone for analysis.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8535617B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8535617B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8535617B23</originalsourceid><addsrcrecordid>eNrjZNBxysnPT1FITs3JUUhKLCrKTC1SSMsvUkhUyEksSS1KzFFIy8kvV0hJLctMTuVhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGhwRamxqZmhuZORsZEKAEAAMko9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Blood cell barrier for a lateral flow device</title><source>esp@cenet</source><creator>MACDONALD J. GAVIN ; SMITH MOLLY K</creator><creatorcontrib>MACDONALD J. GAVIN ; SMITH MOLLY K</creatorcontrib><description>A lateral flow device for analyzing a whole blood sample is provided. More specifically, the lateral flow device contains a porous membrane that defines a barrier zone for separating red blood cells from blood plasma (includes plasma in which clotting factors haven been removed), which may then flow to a subsequent detection zone for analysis. The barrier zone is formed from a blood cell barrier composition that includes an unsaturated aliphatic fatty acid or an ester thereof. Without intending to be limited by theory, the present inventors believe such unsaturated aliphatic fatty acid molecules undergo autoxidation in the presence of air and hemoglobin to release peroxides (e.g., hydrogen peroxide) via oxidative saturation of double bonds. In turn, the released peroxides are believed to induce the formation of echinocytes or crenated blood cells. The crenated red blood cells are distorted in shape and less flexible and malleable than normal red blood cells, making them less able to penetrate into the pores of the porous membrane of the lateral flow device. Consequently, the stiffer, less flexible cells cannot move easily into the porous and become trapped at the surface of the membrane, while the liquid components of the sample flow and penetrate through the membrane to the detection zone for analysis.</description><language>eng</language><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES ; MEASURING ; PHYSICS ; TESTING</subject><creationdate>2013</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20130917&amp;DB=EPODOC&amp;CC=US&amp;NR=8535617B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20130917&amp;DB=EPODOC&amp;CC=US&amp;NR=8535617B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>MACDONALD J. GAVIN</creatorcontrib><creatorcontrib>SMITH MOLLY K</creatorcontrib><title>Blood cell barrier for a lateral flow device</title><description>A lateral flow device for analyzing a whole blood sample is provided. More specifically, the lateral flow device contains a porous membrane that defines a barrier zone for separating red blood cells from blood plasma (includes plasma in which clotting factors haven been removed), which may then flow to a subsequent detection zone for analysis. The barrier zone is formed from a blood cell barrier composition that includes an unsaturated aliphatic fatty acid or an ester thereof. Without intending to be limited by theory, the present inventors believe such unsaturated aliphatic fatty acid molecules undergo autoxidation in the presence of air and hemoglobin to release peroxides (e.g., hydrogen peroxide) via oxidative saturation of double bonds. In turn, the released peroxides are believed to induce the formation of echinocytes or crenated blood cells. The crenated red blood cells are distorted in shape and less flexible and malleable than normal red blood cells, making them less able to penetrate into the pores of the porous membrane of the lateral flow device. Consequently, the stiffer, less flexible cells cannot move easily into the porous and become trapped at the surface of the membrane, while the liquid components of the sample flow and penetrate through the membrane to the detection zone for analysis.</description><subject>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2013</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZNBxysnPT1FITs3JUUhKLCrKTC1SSMsvUkhUyEksSS1KzFFIy8kvV0hJLctMTuVhYE1LzClO5YXS3AwKbq4hzh66qQX58anFBYnJqXmpJfGhwRamxqZmhuZORsZEKAEAAMko9w</recordid><startdate>20130917</startdate><enddate>20130917</enddate><creator>MACDONALD J. GAVIN</creator><creator>SMITH MOLLY K</creator><scope>EVB</scope></search><sort><creationdate>20130917</creationdate><title>Blood cell barrier for a lateral flow device</title><author>MACDONALD J. GAVIN ; SMITH MOLLY K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8535617B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2013</creationdate><topic>INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>MACDONALD J. GAVIN</creatorcontrib><creatorcontrib>SMITH MOLLY K</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MACDONALD J. GAVIN</au><au>SMITH MOLLY K</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Blood cell barrier for a lateral flow device</title><date>2013-09-17</date><risdate>2013</risdate><abstract>A lateral flow device for analyzing a whole blood sample is provided. More specifically, the lateral flow device contains a porous membrane that defines a barrier zone for separating red blood cells from blood plasma (includes plasma in which clotting factors haven been removed), which may then flow to a subsequent detection zone for analysis. The barrier zone is formed from a blood cell barrier composition that includes an unsaturated aliphatic fatty acid or an ester thereof. Without intending to be limited by theory, the present inventors believe such unsaturated aliphatic fatty acid molecules undergo autoxidation in the presence of air and hemoglobin to release peroxides (e.g., hydrogen peroxide) via oxidative saturation of double bonds. In turn, the released peroxides are believed to induce the formation of echinocytes or crenated blood cells. The crenated red blood cells are distorted in shape and less flexible and malleable than normal red blood cells, making them less able to penetrate into the pores of the porous membrane of the lateral flow device. Consequently, the stiffer, less flexible cells cannot move easily into the porous and become trapped at the surface of the membrane, while the liquid components of the sample flow and penetrate through the membrane to the detection zone for analysis.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US8535617B2
source esp@cenet
subjects INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIRCHEMICAL OR PHYSICAL PROPERTIES
MEASURING
PHYSICS
TESTING
title Blood cell barrier for a lateral flow device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=MACDONALD%20J.%20GAVIN&rft.date=2013-09-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8535617B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true