Identifying anomalous object types during classification

Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: COBB WESLEY KENNETH, XU GANG, SEOW MING-JUNG, FRIEDLANDER DAVID, GOTTUMUKKAL RAJKIRAN KUMAR
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator COBB WESLEY KENNETH
XU GANG
SEOW MING-JUNG
FRIEDLANDER DAVID
GOTTUMUKKAL RAJKIRAN KUMAR
description Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8270733B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8270733B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8270733B23</originalsourceid><addsrcrecordid>eNrjZLDwTEnNK8lMq8zMS1dIzMvPTczJLy1WyE_KSk0uUSipLEgtVkgpLQLJJuckFhdnpmUmJ5Zk5ufxMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GALI3MDc2NjJyNjIpQAAAmGLtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Identifying anomalous object types during classification</title><source>esp@cenet</source><creator>COBB WESLEY KENNETH ; XU GANG ; SEOW MING-JUNG ; FRIEDLANDER DAVID ; GOTTUMUKKAL RAJKIRAN KUMAR</creator><creatorcontrib>COBB WESLEY KENNETH ; XU GANG ; SEOW MING-JUNG ; FRIEDLANDER DAVID ; GOTTUMUKKAL RAJKIRAN KUMAR</creatorcontrib><description>Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; HANDLING RECORD CARRIERS ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2012</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20120918&amp;DB=EPODOC&amp;CC=US&amp;NR=8270733B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20120918&amp;DB=EPODOC&amp;CC=US&amp;NR=8270733B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID</creatorcontrib><creatorcontrib>GOTTUMUKKAL RAJKIRAN KUMAR</creatorcontrib><title>Identifying anomalous object types during classification</title><description>Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2012</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDwTEnNK8lMq8zMS1dIzMvPTczJLy1WyE_KSk0uUSipLEgtVkgpLQLJJuckFhdnpmUmJ5Zk5ufxMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GALI3MDc2NjJyNjIpQAAAmGLtc</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>COBB WESLEY KENNETH</creator><creator>XU GANG</creator><creator>SEOW MING-JUNG</creator><creator>FRIEDLANDER DAVID</creator><creator>GOTTUMUKKAL RAJKIRAN KUMAR</creator><scope>EVB</scope></search><sort><creationdate>20120918</creationdate><title>Identifying anomalous object types during classification</title><author>COBB WESLEY KENNETH ; XU GANG ; SEOW MING-JUNG ; FRIEDLANDER DAVID ; GOTTUMUKKAL RAJKIRAN KUMAR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8270733B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID</creatorcontrib><creatorcontrib>GOTTUMUKKAL RAJKIRAN KUMAR</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>COBB WESLEY KENNETH</au><au>XU GANG</au><au>SEOW MING-JUNG</au><au>FRIEDLANDER DAVID</au><au>GOTTUMUKKAL RAJKIRAN KUMAR</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Identifying anomalous object types during classification</title><date>2012-09-18</date><risdate>2012</risdate><abstract>Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US8270733B2
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
DETECTING MASSES OR OBJECTS
GEOPHYSICS
GRAVITATIONAL MEASUREMENTS
HANDLING RECORD CARRIERS
MEASURING
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
TESTING
title Identifying anomalous object types during classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=COBB%20WESLEY%20KENNETH&rft.date=2012-09-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8270733B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true