Identifying anomalous object types during classification
Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | COBB WESLEY KENNETH XU GANG SEOW MING-JUNG FRIEDLANDER DAVID GOTTUMUKKAL RAJKIRAN KUMAR |
description | Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US8270733B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US8270733B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US8270733B23</originalsourceid><addsrcrecordid>eNrjZLDwTEnNK8lMq8zMS1dIzMvPTczJLy1WyE_KSk0uUSipLEgtVkgpLQLJJuckFhdnpmUmJ5Zk5ufxMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GALI3MDc2NjJyNjIpQAAAmGLtc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Identifying anomalous object types during classification</title><source>esp@cenet</source><creator>COBB WESLEY KENNETH ; XU GANG ; SEOW MING-JUNG ; FRIEDLANDER DAVID ; GOTTUMUKKAL RAJKIRAN KUMAR</creator><creatorcontrib>COBB WESLEY KENNETH ; XU GANG ; SEOW MING-JUNG ; FRIEDLANDER DAVID ; GOTTUMUKKAL RAJKIRAN KUMAR</creatorcontrib><description>Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.</description><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; DETECTING MASSES OR OBJECTS ; GEOPHYSICS ; GRAVITATIONAL MEASUREMENTS ; HANDLING RECORD CARRIERS ; MEASURING ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS ; TESTING</subject><creationdate>2012</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20120918&DB=EPODOC&CC=US&NR=8270733B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20120918&DB=EPODOC&CC=US&NR=8270733B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID</creatorcontrib><creatorcontrib>GOTTUMUKKAL RAJKIRAN KUMAR</creatorcontrib><title>Identifying anomalous object types during classification</title><description>Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>DETECTING MASSES OR OBJECTS</subject><subject>GEOPHYSICS</subject><subject>GRAVITATIONAL MEASUREMENTS</subject><subject>HANDLING RECORD CARRIERS</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2012</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLDwTEnNK8lMq8zMS1dIzMvPTczJLy1WyE_KSk0uUSipLEgtVkgpLQLJJuckFhdnpmUmJ5Zk5ufxMLCmJeYUp_JCaW4GBTfXEGcP3dSC_PjU4oLE5NS81JL40GALI3MDc2NjJyNjIpQAAAmGLtc</recordid><startdate>20120918</startdate><enddate>20120918</enddate><creator>COBB WESLEY KENNETH</creator><creator>XU GANG</creator><creator>SEOW MING-JUNG</creator><creator>FRIEDLANDER DAVID</creator><creator>GOTTUMUKKAL RAJKIRAN KUMAR</creator><scope>EVB</scope></search><sort><creationdate>20120918</creationdate><title>Identifying anomalous object types during classification</title><author>COBB WESLEY KENNETH ; XU GANG ; SEOW MING-JUNG ; FRIEDLANDER DAVID ; GOTTUMUKKAL RAJKIRAN KUMAR</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US8270733B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>DETECTING MASSES OR OBJECTS</topic><topic>GEOPHYSICS</topic><topic>GRAVITATIONAL MEASUREMENTS</topic><topic>HANDLING RECORD CARRIERS</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>COBB WESLEY KENNETH</creatorcontrib><creatorcontrib>XU GANG</creatorcontrib><creatorcontrib>SEOW MING-JUNG</creatorcontrib><creatorcontrib>FRIEDLANDER DAVID</creatorcontrib><creatorcontrib>GOTTUMUKKAL RAJKIRAN KUMAR</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>COBB WESLEY KENNETH</au><au>XU GANG</au><au>SEOW MING-JUNG</au><au>FRIEDLANDER DAVID</au><au>GOTTUMUKKAL RAJKIRAN KUMAR</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Identifying anomalous object types during classification</title><date>2012-09-18</date><risdate>2012</risdate><abstract>Techniques are disclosed for identifying anomaly object types during classification of foreground objects extracted from image data. A self-organizing map and adaptive resonance theory (SOM-ART) network is used to discover object type clusters and classify objects depicted in the image data based on pixel-level micro-features that are extracted from the image data. Importantly, the discovery of the object type clusters is unsupervised, i.e., performed independent of any training data that defines particular objects, allowing a behavior-recognition system to forgo a training phase and for object classification to proceed without being constrained by specific object definitions. The SOM-ART network is adaptive and able to learn while discovering the object type clusters and classifying objects and identifying anomaly object types.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US8270733B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTING COUNTING DETECTING MASSES OR OBJECTS GEOPHYSICS GRAVITATIONAL MEASUREMENTS HANDLING RECORD CARRIERS MEASURING PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS TESTING |
title | Identifying anomalous object types during classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A18%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=COBB%20WESLEY%20KENNETH&rft.date=2012-09-18&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS8270733B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |