Method and system for automatically building natural language understanding models

The invention disclosed herein concerns a system (100) and method (600) for building a language model representation of an NLU application. The method 500 can include categorizing an NLU application domain (602), classifying a corpus in view of the categorization (604), and training at least one lan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: BALCHANDRAN RAJESH, BOYER LINDA M
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator BALCHANDRAN RAJESH
BOYER LINDA M
description The invention disclosed herein concerns a system (100) and method (600) for building a language model representation of an NLU application. The method 500 can include categorizing an NLU application domain (602), classifying a corpus in view of the categorization (604), and training at least one language model in view of the classification (606). The categorization produces a hierarchical tree of categories, sub-categories and end targets across one or more features for interpreting one or more natural language input requests. During development of an NLU application, a developer assigns sentences of the NLU application to categories, sub-categories or end targets across one or more features for associating each sentence with desire interpretations. A language model builder (140) iteratively builds multiple language models for this sentence data, and iteratively evaluating them against a test corpus, partitioning the data based on the categorization and rebuilding models, so as to produce an optimal configuration of language models to interpret and respond to language input requests for the NLU application.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US7835911B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US7835911B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US7835911B23</originalsourceid><addsrcrecordid>eNqNizsOwjAMQLMwIOAOvgBDqRCwgkAsLHzmyjRuieQ4VewMvT0gcQCmN7z3pu56IXslDygedFSjCF3KgMVSRAstMo_wLIF9kB4ErWRkYJS-YE9QxFNW-9xfHZMn1rmbdMhKix9nDk7H--G8pCE1pAO2JGTN47bZ1utdVe1X9R_JGwkFOKs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and system for automatically building natural language understanding models</title><source>esp@cenet</source><creator>BALCHANDRAN RAJESH ; BOYER LINDA M</creator><creatorcontrib>BALCHANDRAN RAJESH ; BOYER LINDA M</creatorcontrib><description>The invention disclosed herein concerns a system (100) and method (600) for building a language model representation of an NLU application. The method 500 can include categorizing an NLU application domain (602), classifying a corpus in view of the categorization (604), and training at least one language model in view of the classification (606). The categorization produces a hierarchical tree of categories, sub-categories and end targets across one or more features for interpreting one or more natural language input requests. During development of an NLU application, a developer assigns sentences of the NLU application to categories, sub-categories or end targets across one or more features for associating each sentence with desire interpretations. A language model builder (140) iteratively builds multiple language models for this sentence data, and iteratively evaluating them against a test corpus, partitioning the data based on the categorization and rebuilding models, so as to produce an optimal configuration of language models to interpret and respond to language input requests for the NLU application.</description><language>eng</language><subject>ACOUSTICS ; CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; MUSICAL INSTRUMENTS ; PHYSICS ; SPEECH ANALYSIS OR SYNTHESIS ; SPEECH OR AUDIO CODING OR DECODING ; SPEECH OR VOICE PROCESSING ; SPEECH RECOGNITION</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20101116&amp;DB=EPODOC&amp;CC=US&amp;NR=7835911B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,777,882,25545,76296</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20101116&amp;DB=EPODOC&amp;CC=US&amp;NR=7835911B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>BALCHANDRAN RAJESH</creatorcontrib><creatorcontrib>BOYER LINDA M</creatorcontrib><title>Method and system for automatically building natural language understanding models</title><description>The invention disclosed herein concerns a system (100) and method (600) for building a language model representation of an NLU application. The method 500 can include categorizing an NLU application domain (602), classifying a corpus in view of the categorization (604), and training at least one language model in view of the classification (606). The categorization produces a hierarchical tree of categories, sub-categories and end targets across one or more features for interpreting one or more natural language input requests. During development of an NLU application, a developer assigns sentences of the NLU application to categories, sub-categories or end targets across one or more features for associating each sentence with desire interpretations. A language model builder (140) iteratively builds multiple language models for this sentence data, and iteratively evaluating them against a test corpus, partitioning the data based on the categorization and rebuilding models, so as to produce an optimal configuration of language models to interpret and respond to language input requests for the NLU application.</description><subject>ACOUSTICS</subject><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>MUSICAL INSTRUMENTS</subject><subject>PHYSICS</subject><subject>SPEECH ANALYSIS OR SYNTHESIS</subject><subject>SPEECH OR AUDIO CODING OR DECODING</subject><subject>SPEECH OR VOICE PROCESSING</subject><subject>SPEECH RECOGNITION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizsOwjAMQLMwIOAOvgBDqRCwgkAsLHzmyjRuieQ4VewMvT0gcQCmN7z3pu56IXslDygedFSjCF3KgMVSRAstMo_wLIF9kB4ErWRkYJS-YE9QxFNW-9xfHZMn1rmbdMhKix9nDk7H--G8pCE1pAO2JGTN47bZ1utdVe1X9R_JGwkFOKs</recordid><startdate>20101116</startdate><enddate>20101116</enddate><creator>BALCHANDRAN RAJESH</creator><creator>BOYER LINDA M</creator><scope>EVB</scope></search><sort><creationdate>20101116</creationdate><title>Method and system for automatically building natural language understanding models</title><author>BALCHANDRAN RAJESH ; BOYER LINDA M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US7835911B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACOUSTICS</topic><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>MUSICAL INSTRUMENTS</topic><topic>PHYSICS</topic><topic>SPEECH ANALYSIS OR SYNTHESIS</topic><topic>SPEECH OR AUDIO CODING OR DECODING</topic><topic>SPEECH OR VOICE PROCESSING</topic><topic>SPEECH RECOGNITION</topic><toplevel>online_resources</toplevel><creatorcontrib>BALCHANDRAN RAJESH</creatorcontrib><creatorcontrib>BOYER LINDA M</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>BALCHANDRAN RAJESH</au><au>BOYER LINDA M</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and system for automatically building natural language understanding models</title><date>2010-11-16</date><risdate>2010</risdate><abstract>The invention disclosed herein concerns a system (100) and method (600) for building a language model representation of an NLU application. The method 500 can include categorizing an NLU application domain (602), classifying a corpus in view of the categorization (604), and training at least one language model in view of the classification (606). The categorization produces a hierarchical tree of categories, sub-categories and end targets across one or more features for interpreting one or more natural language input requests. During development of an NLU application, a developer assigns sentences of the NLU application to categories, sub-categories or end targets across one or more features for associating each sentence with desire interpretations. A language model builder (140) iteratively builds multiple language models for this sentence data, and iteratively evaluating them against a test corpus, partitioning the data based on the categorization and rebuilding models, so as to produce an optimal configuration of language models to interpret and respond to language input requests for the NLU application.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US7835911B2
source esp@cenet
subjects ACOUSTICS
CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
MUSICAL INSTRUMENTS
PHYSICS
SPEECH ANALYSIS OR SYNTHESIS
SPEECH OR AUDIO CODING OR DECODING
SPEECH OR VOICE PROCESSING
SPEECH RECOGNITION
title Method and system for automatically building natural language understanding models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=BALCHANDRAN%20RAJESH&rft.date=2010-11-16&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS7835911B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true