Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks

A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: DASH DENVER
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DASH DENVER
description A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US7792779B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US7792779B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US7792779B23</originalsourceid><addsrcrecordid>eNqNyj0OgkAQhmEaC6PeYS5AgwWxZdFYGRN_WjKuH2EC7hJmCOH2auIBLN68zbNM7iUM3iQGijWhlyde4imO9hjArdIk1tAZg4oagpHjUblLXcMSqJwDf3nBM1Q40Ak2xaHVdbKouVNsfl8ldNhf3TFFHytozx4BVt0ueb7LPhXZ9g_yBrM_OXc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><source>esp@cenet</source><creator>DASH DENVER</creator><creatorcontrib>DASH DENVER</creatorcontrib><description>A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.</description><language>eng</language><subject>ALARM SYSTEMS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100907&amp;DB=EPODOC&amp;CC=US&amp;NR=7792779B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20100907&amp;DB=EPODOC&amp;CC=US&amp;NR=7792779B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DASH DENVER</creatorcontrib><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><description>A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.</description><subject>ALARM SYSTEMS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0OgkAQhmEaC6PeYS5AgwWxZdFYGRN_WjKuH2EC7hJmCOH2auIBLN68zbNM7iUM3iQGijWhlyde4imO9hjArdIk1tAZg4oagpHjUblLXcMSqJwDf3nBM1Q40Ak2xaHVdbKouVNsfl8ldNhf3TFFHytozx4BVt0ueb7LPhXZ9g_yBrM_OXc</recordid><startdate>20100907</startdate><enddate>20100907</enddate><creator>DASH DENVER</creator><scope>EVB</scope></search><sort><creationdate>20100907</creationdate><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><author>DASH DENVER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US7792779B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALARM SYSTEMS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>DASH DENVER</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DASH DENVER</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><date>2010-09-07</date><risdate>2010</risdate><abstract>A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US7792779B2
source esp@cenet
subjects ALARM SYSTEMS
CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS
ORDER TELEGRAPHS
PHYSICS
SIGNALLING
SIGNALLING OR CALLING SYSTEMS
title Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DASH%20DENVER&rft.date=2010-09-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS7792779B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true