Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks
A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | DASH DENVER |
description | A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US7792779B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US7792779B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US7792779B23</originalsourceid><addsrcrecordid>eNqNyj0OgkAQhmEaC6PeYS5AgwWxZdFYGRN_WjKuH2EC7hJmCOH2auIBLN68zbNM7iUM3iQGijWhlyde4imO9hjArdIk1tAZg4oagpHjUblLXcMSqJwDf3nBM1Q40Ak2xaHVdbKouVNsfl8ldNhf3TFFHytozx4BVt0ueb7LPhXZ9g_yBrM_OXc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><source>esp@cenet</source><creator>DASH DENVER</creator><creatorcontrib>DASH DENVER</creatorcontrib><description>A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.</description><language>eng</language><subject>ALARM SYSTEMS ; CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ; ORDER TELEGRAPHS ; PHYSICS ; SIGNALLING ; SIGNALLING OR CALLING SYSTEMS</subject><creationdate>2010</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100907&DB=EPODOC&CC=US&NR=7792779B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20100907&DB=EPODOC&CC=US&NR=7792779B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DASH DENVER</creatorcontrib><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><description>A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.</description><subject>ALARM SYSTEMS</subject><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</subject><subject>ORDER TELEGRAPHS</subject><subject>PHYSICS</subject><subject>SIGNALLING</subject><subject>SIGNALLING OR CALLING SYSTEMS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2010</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNyj0OgkAQhmEaC6PeYS5AgwWxZdFYGRN_WjKuH2EC7hJmCOH2auIBLN68zbNM7iUM3iQGijWhlyde4imO9hjArdIk1tAZg4oagpHjUblLXcMSqJwDf3nBM1Q40Ak2xaHVdbKouVNsfl8ldNhf3TFFHytozx4BVt0ueb7LPhXZ9g_yBrM_OXc</recordid><startdate>20100907</startdate><enddate>20100907</enddate><creator>DASH DENVER</creator><scope>EVB</scope></search><sort><creationdate>20100907</creationdate><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><author>DASH DENVER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US7792779B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ALARM SYSTEMS</topic><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS</topic><topic>ORDER TELEGRAPHS</topic><topic>PHYSICS</topic><topic>SIGNALLING</topic><topic>SIGNALLING OR CALLING SYSTEMS</topic><toplevel>online_resources</toplevel><creatorcontrib>DASH DENVER</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DASH DENVER</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks</title><date>2010-09-07</date><risdate>2010</risdate><abstract>A method for determining a probability of a hidden variable from an observed variable in a Dynamic Bayesian Network is presented. The method includes identifying the network based on predetermined criteria, determining a number of hidden variables in a time slice of the network, determining a number of the time slices of the network, and determining the probability of the hidden variable from the observed variable in less than exponential time with respect to the number of hidden variables.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US7792779B2 |
source | esp@cenet |
subjects | ALARM SYSTEMS CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTEDFOR SPECIFIC APPLICATION FIELDS ORDER TELEGRAPHS PHYSICS SIGNALLING SIGNALLING OR CALLING SYSTEMS |
title | Detection of epidemic outbreaks with Persistent Causal-Chain Dynamic Bayesian Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DASH%20DENVER&rft.date=2010-09-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS7792779B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |