Input feature and kernel selection for support vector machine classification
A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM c...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | FUNG GLENN M MANGASARIAN OLVI L |
description | A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US7421417B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US7421417B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US7421417B23</originalsourceid><addsrcrecordid>eNqNisEKwjAQBXPxIOo_7A_00FroXVEqeFPPZYkvGIybkE38fiv4AZ6GGWZpzidJtZADl5pBLHd6IgsCKQJs8VHIxUxaU4q50Htus77YPryAbGBV77zl77k2C8dBsflxZeh4uO7HBilO0MQWgjLdLkPftX077LrtH8sHc382Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Input feature and kernel selection for support vector machine classification</title><source>esp@cenet</source><creator>FUNG GLENN M ; MANGASARIAN OLVI L</creator><creatorcontrib>FUNG GLENN M ; MANGASARIAN OLVI L</creatorcontrib><description>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; OPTICAL COMPUTING DEVICES ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2008</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20080902&DB=EPODOC&CC=US&NR=7421417B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20080902&DB=EPODOC&CC=US&NR=7421417B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FUNG GLENN M</creatorcontrib><creatorcontrib>MANGASARIAN OLVI L</creatorcontrib><title>Input feature and kernel selection for support vector machine classification</title><description>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>OPTICAL COMPUTING DEVICES</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2008</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKwjAQBXPxIOo_7A_00FroXVEqeFPPZYkvGIybkE38fiv4AZ6GGWZpzidJtZADl5pBLHd6IgsCKQJs8VHIxUxaU4q50Htus77YPryAbGBV77zl77k2C8dBsflxZeh4uO7HBilO0MQWgjLdLkPftX077LrtH8sHc382Jw</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>FUNG GLENN M</creator><creator>MANGASARIAN OLVI L</creator><scope>EVB</scope></search><sort><creationdate>20080902</creationdate><title>Input feature and kernel selection for support vector machine classification</title><author>FUNG GLENN M ; MANGASARIAN OLVI L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US7421417B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>OPTICAL COMPUTING DEVICES</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FUNG GLENN M</creatorcontrib><creatorcontrib>MANGASARIAN OLVI L</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FUNG GLENN M</au><au>MANGASARIAN OLVI L</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Input feature and kernel selection for support vector machine classification</title><date>2008-09-02</date><risdate>2008</risdate><abstract>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US7421417B2 |
source | esp@cenet |
subjects | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING ELECTRIC DIGITAL DATA PROCESSING HANDLING RECORD CARRIERS OPTICAL COMPUTING DEVICES PHYSICS PRESENTATION OF DATA RECOGNITION OF DATA RECORD CARRIERS |
title | Input feature and kernel selection for support vector machine classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FUNG%20GLENN%20M&rft.date=2008-09-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS7421417B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |