Input feature and kernel selection for support vector machine classification

A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FUNG GLENN M, MANGASARIAN OLVI L
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator FUNG GLENN M
MANGASARIAN OLVI L
description A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US7421417B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US7421417B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US7421417B23</originalsourceid><addsrcrecordid>eNqNisEKwjAQBXPxIOo_7A_00FroXVEqeFPPZYkvGIybkE38fiv4AZ6GGWZpzidJtZADl5pBLHd6IgsCKQJs8VHIxUxaU4q50Htus77YPryAbGBV77zl77k2C8dBsflxZeh4uO7HBilO0MQWgjLdLkPftX077LrtH8sHc382Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Input feature and kernel selection for support vector machine classification</title><source>esp@cenet</source><creator>FUNG GLENN M ; MANGASARIAN OLVI L</creator><creatorcontrib>FUNG GLENN M ; MANGASARIAN OLVI L</creatorcontrib><description>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</description><language>eng</language><subject>CALCULATING ; COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; HANDLING RECORD CARRIERS ; OPTICAL COMPUTING DEVICES ; PHYSICS ; PRESENTATION OF DATA ; RECOGNITION OF DATA ; RECORD CARRIERS</subject><creationdate>2008</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20080902&amp;DB=EPODOC&amp;CC=US&amp;NR=7421417B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76289</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20080902&amp;DB=EPODOC&amp;CC=US&amp;NR=7421417B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>FUNG GLENN M</creatorcontrib><creatorcontrib>MANGASARIAN OLVI L</creatorcontrib><title>Input feature and kernel selection for support vector machine classification</title><description>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</description><subject>CALCULATING</subject><subject>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>HANDLING RECORD CARRIERS</subject><subject>OPTICAL COMPUTING DEVICES</subject><subject>PHYSICS</subject><subject>PRESENTATION OF DATA</subject><subject>RECOGNITION OF DATA</subject><subject>RECORD CARRIERS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2008</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNisEKwjAQBXPxIOo_7A_00FroXVEqeFPPZYkvGIybkE38fiv4AZ6GGWZpzidJtZADl5pBLHd6IgsCKQJs8VHIxUxaU4q50Htus77YPryAbGBV77zl77k2C8dBsflxZeh4uO7HBilO0MQWgjLdLkPftX077LrtH8sHc382Jw</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>FUNG GLENN M</creator><creator>MANGASARIAN OLVI L</creator><scope>EVB</scope></search><sort><creationdate>20080902</creationdate><title>Input feature and kernel selection for support vector machine classification</title><author>FUNG GLENN M ; MANGASARIAN OLVI L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US7421417B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2008</creationdate><topic>CALCULATING</topic><topic>COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>HANDLING RECORD CARRIERS</topic><topic>OPTICAL COMPUTING DEVICES</topic><topic>PHYSICS</topic><topic>PRESENTATION OF DATA</topic><topic>RECOGNITION OF DATA</topic><topic>RECORD CARRIERS</topic><toplevel>online_resources</toplevel><creatorcontrib>FUNG GLENN M</creatorcontrib><creatorcontrib>MANGASARIAN OLVI L</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>FUNG GLENN M</au><au>MANGASARIAN OLVI L</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Input feature and kernel selection for support vector machine classification</title><date>2008-09-02</date><risdate>2008</risdate><abstract>A feature selection technique for support vector machine (SVM) classification makes use of fast Newton method that suppresses input space features for a linear programming formulation of a linear SVM classifier, or suppresses kernel functions for a linear programming formulation of a nonlinear SVM classifier. The techniques may be implemented with a linear equation solver, without the need for specialized linear programming packages. The feature selection technique may be applicable to linear or nonlinear SVM classifiers. The technique may involve defining a linear programming formulation of a SVM classifier, solving an exterior penalty function of a dual of the linear programming formulation to produce a solution to the SVM classifier using a Newton method, and selecting an input set for the SVM classifier based on the solution.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US7421417B2
source esp@cenet
subjects CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
HANDLING RECORD CARRIERS
OPTICAL COMPUTING DEVICES
PHYSICS
PRESENTATION OF DATA
RECOGNITION OF DATA
RECORD CARRIERS
title Input feature and kernel selection for support vector machine classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A18%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=FUNG%20GLENN%20M&rft.date=2008-09-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS7421417B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true