Passive millimeter wave sensor using high temperature superconducting leads

A radiation sensor ( 20 ) has a substrate ( 34 ); an antenna ( 24 ) coupled to the substrate ( 34 ), a thermal detector unit TDU ( 22 ) spaced from the antenna ( 24 ) and the substrate ( 34 ); and a multi-layered conductive lead ( 30 ). The conductive lead ( 30 ) physically contacts the antenna ( 24...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: GORDON ELI E, JACK MICHAEL D
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator GORDON ELI E
JACK MICHAEL D
description A radiation sensor ( 20 ) has a substrate ( 34 ); an antenna ( 24 ) coupled to the substrate ( 34 ), a thermal detector unit TDU ( 22 ) spaced from the antenna ( 24 ) and the substrate ( 34 ); and a multi-layered conductive lead ( 30 ). The conductive lead ( 30 ) physically contacts the antenna ( 24 ) and the TDU ( 22 ). The conductive lead ( 30 ) defines a support layer ( 44 ) adjacent to the substrate ( 34 ) for structurally supporting the TDU ( 22 ) over a cavity defined by the substrate ( 34 ), a buffer layer ( 46 ) disposed on the support layer ( 44 ), and a superconductive layer ( 48 ) disposed on the buffer layer ( 46 ). The buffer layer has a crystalline structure to facilitate bonding with other layers. A method for making the sensor ( 20 ) is disclosed wherein the superconductive layer ( 48 ) and the buffer layer ( 46 ) are deposited using laser deposit, the buffer layer ( 46 ) with ion beam assist for alignment.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US7132655B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US7132655B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US7132655B23</originalsourceid><addsrcrecordid>eNrjZPAOSCwuzixLVcjNzMnJzE0tSS1SKE8E8otT84rzixRKizPz0hUyMtMzFEpScwtSixJLSouAsqVAZnJ-XkppcglIQU5qYkoxDwNrWmJOcSovlOZmUHBzDXH20E0tyI9PLS5ITE7NSy2JDw02NzQ2MjM1dTIyJkIJAHCfNjQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Passive millimeter wave sensor using high temperature superconducting leads</title><source>esp@cenet</source><creator>GORDON ELI E ; JACK MICHAEL D</creator><creatorcontrib>GORDON ELI E ; JACK MICHAEL D</creatorcontrib><description>A radiation sensor ( 20 ) has a substrate ( 34 ); an antenna ( 24 ) coupled to the substrate ( 34 ), a thermal detector unit TDU ( 22 ) spaced from the antenna ( 24 ) and the substrate ( 34 ); and a multi-layered conductive lead ( 30 ). The conductive lead ( 30 ) physically contacts the antenna ( 24 ) and the TDU ( 22 ). The conductive lead ( 30 ) defines a support layer ( 44 ) adjacent to the substrate ( 34 ) for structurally supporting the TDU ( 22 ) over a cavity defined by the substrate ( 34 ), a buffer layer ( 46 ) disposed on the support layer ( 44 ), and a superconductive layer ( 48 ) disposed on the buffer layer ( 46 ). The buffer layer has a crystalline structure to facilitate bonding with other layers. A method for making the sensor ( 20 ) is disclosed wherein the superconductive layer ( 48 ) and the buffer layer ( 46 ) are deposited using laser deposit, the buffer layer ( 46 ) with ion beam assist for alignment.</description><language>eng</language><subject>ANTENNAS, i.e. RADIO AERIALS ; BASIC ELECTRIC ELEMENTS ; COLORIMETRY ; ELECTRICITY ; MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT ; MEASURING ; PHYSICS ; RADIATION PYROMETRY ; TESTING</subject><creationdate>2006</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20061107&amp;DB=EPODOC&amp;CC=US&amp;NR=7132655B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20061107&amp;DB=EPODOC&amp;CC=US&amp;NR=7132655B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>GORDON ELI E</creatorcontrib><creatorcontrib>JACK MICHAEL D</creatorcontrib><title>Passive millimeter wave sensor using high temperature superconducting leads</title><description>A radiation sensor ( 20 ) has a substrate ( 34 ); an antenna ( 24 ) coupled to the substrate ( 34 ), a thermal detector unit TDU ( 22 ) spaced from the antenna ( 24 ) and the substrate ( 34 ); and a multi-layered conductive lead ( 30 ). The conductive lead ( 30 ) physically contacts the antenna ( 24 ) and the TDU ( 22 ). The conductive lead ( 30 ) defines a support layer ( 44 ) adjacent to the substrate ( 34 ) for structurally supporting the TDU ( 22 ) over a cavity defined by the substrate ( 34 ), a buffer layer ( 46 ) disposed on the support layer ( 44 ), and a superconductive layer ( 48 ) disposed on the buffer layer ( 46 ). The buffer layer has a crystalline structure to facilitate bonding with other layers. A method for making the sensor ( 20 ) is disclosed wherein the superconductive layer ( 48 ) and the buffer layer ( 46 ) are deposited using laser deposit, the buffer layer ( 46 ) with ion beam assist for alignment.</description><subject>ANTENNAS, i.e. RADIO AERIALS</subject><subject>BASIC ELECTRIC ELEMENTS</subject><subject>COLORIMETRY</subject><subject>ELECTRICITY</subject><subject>MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT</subject><subject>MEASURING</subject><subject>PHYSICS</subject><subject>RADIATION PYROMETRY</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2006</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZPAOSCwuzixLVcjNzMnJzE0tSS1SKE8E8otT84rzixRKizPz0hUyMtMzFEpScwtSixJLSouAsqVAZnJ-XkppcglIQU5qYkoxDwNrWmJOcSovlOZmUHBzDXH20E0tyI9PLS5ITE7NSy2JDw02NzQ2MjM1dTIyJkIJAHCfNjQ</recordid><startdate>20061107</startdate><enddate>20061107</enddate><creator>GORDON ELI E</creator><creator>JACK MICHAEL D</creator><scope>EVB</scope></search><sort><creationdate>20061107</creationdate><title>Passive millimeter wave sensor using high temperature superconducting leads</title><author>GORDON ELI E ; JACK MICHAEL D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US7132655B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ANTENNAS, i.e. RADIO AERIALS</topic><topic>BASIC ELECTRIC ELEMENTS</topic><topic>COLORIMETRY</topic><topic>ELECTRICITY</topic><topic>MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT</topic><topic>MEASURING</topic><topic>PHYSICS</topic><topic>RADIATION PYROMETRY</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>GORDON ELI E</creatorcontrib><creatorcontrib>JACK MICHAEL D</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>GORDON ELI E</au><au>JACK MICHAEL D</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Passive millimeter wave sensor using high temperature superconducting leads</title><date>2006-11-07</date><risdate>2006</risdate><abstract>A radiation sensor ( 20 ) has a substrate ( 34 ); an antenna ( 24 ) coupled to the substrate ( 34 ), a thermal detector unit TDU ( 22 ) spaced from the antenna ( 24 ) and the substrate ( 34 ); and a multi-layered conductive lead ( 30 ). The conductive lead ( 30 ) physically contacts the antenna ( 24 ) and the TDU ( 22 ). The conductive lead ( 30 ) defines a support layer ( 44 ) adjacent to the substrate ( 34 ) for structurally supporting the TDU ( 22 ) over a cavity defined by the substrate ( 34 ), a buffer layer ( 46 ) disposed on the support layer ( 44 ), and a superconductive layer ( 48 ) disposed on the buffer layer ( 46 ). The buffer layer has a crystalline structure to facilitate bonding with other layers. A method for making the sensor ( 20 ) is disclosed wherein the superconductive layer ( 48 ) and the buffer layer ( 46 ) are deposited using laser deposit, the buffer layer ( 46 ) with ion beam assist for alignment.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US7132655B2
source esp@cenet
subjects ANTENNAS, i.e. RADIO AERIALS
BASIC ELECTRIC ELEMENTS
COLORIMETRY
ELECTRICITY
MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT,POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED,VISIBLE OR ULTRA-VIOLET LIGHT
MEASURING
PHYSICS
RADIATION PYROMETRY
TESTING
title Passive millimeter wave sensor using high temperature superconducting leads
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A30%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=GORDON%20ELI%20E&rft.date=2006-11-07&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS7132655B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true