Steel for plastic molds and process for their heat treatment
Maraging steel with improved machinability, good weldability, and high corrosion resistance, a process for the heat treatment of such a steel, as well as its use. According to the invention this steel contains (in % by weight) 0.02-0.075% carbon; 0.1-0.6% silicon; 0.5-0.9% manganese; 0.08-0.25% sulf...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | LICHTENEGGER GERHARD SAMMER JOHANN SAMMT KLAUS |
description | Maraging steel with improved machinability, good weldability, and high corrosion resistance, a process for the heat treatment of such a steel, as well as its use. According to the invention this steel contains (in % by weight) 0.02-0.075% carbon; 0.1-0.6% silicon; 0.5-0.9% manganese; 0.08-0.25% sulfur; maximum 0.04%; phosphorus; 12.4-15.2% chromium; 0.05-1.0% molybdenum; 0.2-1.8% nickel; maximum 0.15% vanadium; 0.1-0.45% copper; maximum 0.03% aluminum; 0.02-0.08% nitrogen; as well as optionally one or more additional alloying elements up to maximum 2.0%, residual iron, and impurities caused in manufacturing, and a ferrite percentage in the structure of less than 28% by volume. A process is also provided for the heat treatment of a maraging steel with improved machinability, which process makes an object that is through-hardened even with a large cross-section, lies essentially in that a steel block with the above composition is subjected in a first step to an annealing treatment for the formation and adjustment of a ferrite percentage in the structure and in a second step a hot forming of the same takes place, after which in a third step a soft annealing and then a thermal tempering are performed. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US6893608B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US6893608B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US6893608B23</originalsourceid><addsrcrecordid>eNrjZLAJLklNzVFIyy9SKMhJLC7JTFbIzc9JKVZIzEtRKCjKT04tLgbLlmSkZhYpZKQmliiUFAHJ3NS8Eh4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEh8abGZhaWxmYOFkZEyEEgB5py-D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Steel for plastic molds and process for their heat treatment</title><source>esp@cenet</source><creator>LICHTENEGGER GERHARD ; SAMMER JOHANN ; SAMMT KLAUS</creator><creatorcontrib>LICHTENEGGER GERHARD ; SAMMER JOHANN ; SAMMT KLAUS</creatorcontrib><description>Maraging steel with improved machinability, good weldability, and high corrosion resistance, a process for the heat treatment of such a steel, as well as its use. According to the invention this steel contains (in % by weight) 0.02-0.075% carbon; 0.1-0.6% silicon; 0.5-0.9% manganese; 0.08-0.25% sulfur; maximum 0.04%; phosphorus; 12.4-15.2% chromium; 0.05-1.0% molybdenum; 0.2-1.8% nickel; maximum 0.15% vanadium; 0.1-0.45% copper; maximum 0.03% aluminum; 0.02-0.08% nitrogen; as well as optionally one or more additional alloying elements up to maximum 2.0%, residual iron, and impurities caused in manufacturing, and a ferrite percentage in the structure of less than 28% by volume. A process is also provided for the heat treatment of a maraging steel with improved machinability, which process makes an object that is through-hardened even with a large cross-section, lies essentially in that a steel block with the above composition is subjected in a first step to an annealing treatment for the formation and adjustment of a ferrite percentage in the structure and in a second step a hot forming of the same takes place, after which in a third step a soft annealing and then a thermal tempering are performed.</description><edition>7</edition><language>eng</language><subject>ALLOYS ; CHEMISTRY ; CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS ; FERROUS OR NON-FERROUS ALLOYS ; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS ; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC ; GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS ; MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS ; METALLURGY ; METALLURGY OF IRON ; MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS ; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS ; TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE ; TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><creationdate>2005</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20050517&DB=EPODOC&CC=US&NR=6893608B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25543,76293</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20050517&DB=EPODOC&CC=US&NR=6893608B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>LICHTENEGGER GERHARD</creatorcontrib><creatorcontrib>SAMMER JOHANN</creatorcontrib><creatorcontrib>SAMMT KLAUS</creatorcontrib><title>Steel for plastic molds and process for their heat treatment</title><description>Maraging steel with improved machinability, good weldability, and high corrosion resistance, a process for the heat treatment of such a steel, as well as its use. According to the invention this steel contains (in % by weight) 0.02-0.075% carbon; 0.1-0.6% silicon; 0.5-0.9% manganese; 0.08-0.25% sulfur; maximum 0.04%; phosphorus; 12.4-15.2% chromium; 0.05-1.0% molybdenum; 0.2-1.8% nickel; maximum 0.15% vanadium; 0.1-0.45% copper; maximum 0.03% aluminum; 0.02-0.08% nitrogen; as well as optionally one or more additional alloying elements up to maximum 2.0%, residual iron, and impurities caused in manufacturing, and a ferrite percentage in the structure of less than 28% by volume. A process is also provided for the heat treatment of a maraging steel with improved machinability, which process makes an object that is through-hardened even with a large cross-section, lies essentially in that a steel block with the above composition is subjected in a first step to an annealing treatment for the formation and adjustment of a ferrite percentage in the structure and in a second step a hot forming of the same takes place, after which in a third step a soft annealing and then a thermal tempering are performed.</description><subject>ALLOYS</subject><subject>CHEMISTRY</subject><subject>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</subject><subject>FERROUS OR NON-FERROUS ALLOYS</subject><subject>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</subject><subject>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</subject><subject>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</subject><subject>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</subject><subject>METALLURGY</subject><subject>METALLURGY OF IRON</subject><subject>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</subject><subject>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</subject><subject>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</subject><subject>TREATMENT OF ALLOYS OR NON-FERROUS METALS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2005</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZLAJLklNzVFIyy9SKMhJLC7JTFbIzc9JKVZIzEtRKCjKT04tLgbLlmSkZhYpZKQmliiUFAHJ3NS8Eh4G1rTEnOJUXijNzaDg5hri7KGbWpAfn1pckJicmpdaEh8abGZhaWxmYOFkZEyEEgB5py-D</recordid><startdate>20050517</startdate><enddate>20050517</enddate><creator>LICHTENEGGER GERHARD</creator><creator>SAMMER JOHANN</creator><creator>SAMMT KLAUS</creator><scope>EVB</scope></search><sort><creationdate>20050517</creationdate><title>Steel for plastic molds and process for their heat treatment</title><author>LICHTENEGGER GERHARD ; SAMMER JOHANN ; SAMMT KLAUS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US6893608B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2005</creationdate><topic>ALLOYS</topic><topic>CHEMISTRY</topic><topic>CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS</topic><topic>FERROUS OR NON-FERROUS ALLOYS</topic><topic>GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS</topic><topic>GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC</topic><topic>GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS</topic><topic>MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS</topic><topic>METALLURGY</topic><topic>METALLURGY OF IRON</topic><topic>MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS</topic><topic>TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS</topic><topic>TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE</topic><topic>TREATMENT OF ALLOYS OR NON-FERROUS METALS</topic><toplevel>online_resources</toplevel><creatorcontrib>LICHTENEGGER GERHARD</creatorcontrib><creatorcontrib>SAMMER JOHANN</creatorcontrib><creatorcontrib>SAMMT KLAUS</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>LICHTENEGGER GERHARD</au><au>SAMMER JOHANN</au><au>SAMMT KLAUS</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Steel for plastic molds and process for their heat treatment</title><date>2005-05-17</date><risdate>2005</risdate><abstract>Maraging steel with improved machinability, good weldability, and high corrosion resistance, a process for the heat treatment of such a steel, as well as its use. According to the invention this steel contains (in % by weight) 0.02-0.075% carbon; 0.1-0.6% silicon; 0.5-0.9% manganese; 0.08-0.25% sulfur; maximum 0.04%; phosphorus; 12.4-15.2% chromium; 0.05-1.0% molybdenum; 0.2-1.8% nickel; maximum 0.15% vanadium; 0.1-0.45% copper; maximum 0.03% aluminum; 0.02-0.08% nitrogen; as well as optionally one or more additional alloying elements up to maximum 2.0%, residual iron, and impurities caused in manufacturing, and a ferrite percentage in the structure of less than 28% by volume. A process is also provided for the heat treatment of a maraging steel with improved machinability, which process makes an object that is through-hardened even with a large cross-section, lies essentially in that a steel block with the above composition is subjected in a first step to an annealing treatment for the formation and adjustment of a ferrite percentage in the structure and in a second step a hot forming of the same takes place, after which in a third step a soft annealing and then a thermal tempering are performed.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US6893608B2 |
source | esp@cenet |
subjects | ALLOYS CHEMISTRY CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION ORPROCESSING OF GOODS FERROUS OR NON-FERROUS ALLOYS GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUSMETALS OR ALLOYS GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS MAKING METAL MALLEABLE BY DECARBURISATION, TEMPERING OR OTHERTREATMENTS METALLURGY METALLURGY OF IRON MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINSTCLIMATE CHANGE TREATMENT OF ALLOYS OR NON-FERROUS METALS |
title | Steel for plastic molds and process for their heat treatment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=LICHTENEGGER%20GERHARD&rft.date=2005-05-17&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS6893608B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |