Depositing fluid specimens on substrates, resulting ordered arrays, techniques for analysis of deposited arrays

For depositing fluid dots in an array, e.g., for microscopic analysis, a deposit device, e.g. a pin, cooperating with a fluid source defines a precisely sized drop of fluid of small diameter on a drop carrying surface. Transport mechanism positions the device precisely over the receiving surface and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: FLOWERS PETER T, HONKANEN PETER, MONTAGU JEAN I, OVERBECK JAMES W, MACE MYLES L
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For depositing fluid dots in an array, e.g., for microscopic analysis, a deposit device, e.g. a pin, cooperating with a fluid source defines a precisely sized drop of fluid of small diameter on a drop carrying surface. Transport mechanism positions the device precisely over the receiving surface and drive mechanism moves the deposit device toward and away from the surface. By repeated action, minute drops of fluid can be deposited precisely in a dense array, preferably under computer control. The drop-carrying surface shown has a diameter less than 375, preferably less than 300, preferably between about 15 and 250 micron, and is bound by a sharp rim that defines the perimeter of the fluid drop. The deposit device is compliant in the direction of deposition motion, e.g. by overcoming resistance of a resilient member. When depositing, the deposit device is laterally constrained to a reference position, e.g. by flexure mounting or the deposit device is mounted to displace from its mounting upon engagement with the receiving surface, and is subject to a lateral force or turning moment that engages the device with a lateral reference surface. A mobile-fluid storage device resupplies the deposit device along the array, e.g. in the immediate vicinity of the deposit locations. Mobile annular storage rings are lowered and raised to obtain a supply of fluid, or a mobile multiwell plate is used. Cleaning mechanism, sampling plans, and array products on microscope slides and fragile or soft membranes are disclosed as are many types of fluid and uses, e.g., in biotechnology, analysis and process control.