Integrated NAND and flip-flop circuit

A combination NAND and flip-flop circuit includes a pre-NAND scan circuit operable to receive a plurality of input signals and produce first and second output signals for receipt by a NAND gate. The plurality of signals comprises signals indicative of a first data signal, a second data signal, a sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: HILL ANTHONY M
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator HILL ANTHONY M
description A combination NAND and flip-flop circuit includes a pre-NAND scan circuit operable to receive a plurality of input signals and produce first and second output signals for receipt by a NAND gate. The plurality of signals comprises signals indicative of a first data signal, a second data signal, a scan-in signal, and a scan-enable signal. These circuits include a NAND gate having first and second inputs operable to receive the first and second output signals of the pre-NAND scan circuit. They also include a first transmission gate and a first inverter. The transmission gate receives the output of the NAND gate and the inverter receives the output of the transmission gate. The pre-NAND scan circuit is operable to produce the first and second output signals based on the plurality of input signals such that the first and second output signals are defined as described below. When the scan-enable signal is equal to a logical one then the first output signal and the second output signal are either both equal to the scan-in signal or the first output signal is equal to a logical one and the second output signal is equal to the scan-in signal. When the scan-enable signal is equal to a logical zero, then the first output signal is equal to the first data signal and the second output signal is equal to the second data signal.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US6492841B2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US6492841B2</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US6492841B23</originalsourceid><addsrcrecordid>eNrjZFD1zCtJTS9KLElNUfBz9HNRSMxLUUjLySzQTcvJL1BIzixKLs0s4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBZiaWRhYmhk5GxkQoAQCm6iY5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Integrated NAND and flip-flop circuit</title><source>esp@cenet</source><creator>HILL ANTHONY M</creator><creatorcontrib>HILL ANTHONY M</creatorcontrib><description>A combination NAND and flip-flop circuit includes a pre-NAND scan circuit operable to receive a plurality of input signals and produce first and second output signals for receipt by a NAND gate. The plurality of signals comprises signals indicative of a first data signal, a second data signal, a scan-in signal, and a scan-enable signal. These circuits include a NAND gate having first and second inputs operable to receive the first and second output signals of the pre-NAND scan circuit. They also include a first transmission gate and a first inverter. The transmission gate receives the output of the NAND gate and the inverter receives the output of the transmission gate. The pre-NAND scan circuit is operable to produce the first and second output signals based on the plurality of input signals such that the first and second output signals are defined as described below. When the scan-enable signal is equal to a logical one then the first output signal and the second output signal are either both equal to the scan-in signal or the first output signal is equal to a logical one and the second output signal is equal to the scan-in signal. When the scan-enable signal is equal to a logical zero, then the first output signal is equal to the first data signal and the second output signal is equal to the second data signal.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRONIC CIRCUITRY ; ELECTRICITY ; PULSE TECHNIQUE</subject><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20021210&amp;DB=EPODOC&amp;CC=US&amp;NR=6492841B2$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20021210&amp;DB=EPODOC&amp;CC=US&amp;NR=6492841B2$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>HILL ANTHONY M</creatorcontrib><title>Integrated NAND and flip-flop circuit</title><description>A combination NAND and flip-flop circuit includes a pre-NAND scan circuit operable to receive a plurality of input signals and produce first and second output signals for receipt by a NAND gate. The plurality of signals comprises signals indicative of a first data signal, a second data signal, a scan-in signal, and a scan-enable signal. These circuits include a NAND gate having first and second inputs operable to receive the first and second output signals of the pre-NAND scan circuit. They also include a first transmission gate and a first inverter. The transmission gate receives the output of the NAND gate and the inverter receives the output of the transmission gate. The pre-NAND scan circuit is operable to produce the first and second output signals based on the plurality of input signals such that the first and second output signals are defined as described below. When the scan-enable signal is equal to a logical one then the first output signal and the second output signal are either both equal to the scan-in signal or the first output signal is equal to a logical one and the second output signal is equal to the scan-in signal. When the scan-enable signal is equal to a logical zero, then the first output signal is equal to the first data signal and the second output signal is equal to the second data signal.</description><subject>BASIC ELECTRONIC CIRCUITRY</subject><subject>ELECTRICITY</subject><subject>PULSE TECHNIQUE</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD1zCtJTS9KLElNUfBz9HNRSMxLUUjLySzQTcvJL1BIzixKLs0s4WFgTUvMKU7lhdLcDApuriHOHrqpBfnxqcUFicmpeakl8aHBZiaWRhYmhk5GxkQoAQCm6iY5</recordid><startdate>20021210</startdate><enddate>20021210</enddate><creator>HILL ANTHONY M</creator><scope>EVB</scope></search><sort><creationdate>20021210</creationdate><title>Integrated NAND and flip-flop circuit</title><author>HILL ANTHONY M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US6492841B23</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2002</creationdate><topic>BASIC ELECTRONIC CIRCUITRY</topic><topic>ELECTRICITY</topic><topic>PULSE TECHNIQUE</topic><toplevel>online_resources</toplevel><creatorcontrib>HILL ANTHONY M</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HILL ANTHONY M</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Integrated NAND and flip-flop circuit</title><date>2002-12-10</date><risdate>2002</risdate><abstract>A combination NAND and flip-flop circuit includes a pre-NAND scan circuit operable to receive a plurality of input signals and produce first and second output signals for receipt by a NAND gate. The plurality of signals comprises signals indicative of a first data signal, a second data signal, a scan-in signal, and a scan-enable signal. These circuits include a NAND gate having first and second inputs operable to receive the first and second output signals of the pre-NAND scan circuit. They also include a first transmission gate and a first inverter. The transmission gate receives the output of the NAND gate and the inverter receives the output of the transmission gate. The pre-NAND scan circuit is operable to produce the first and second output signals based on the plurality of input signals such that the first and second output signals are defined as described below. When the scan-enable signal is equal to a logical one then the first output signal and the second output signal are either both equal to the scan-in signal or the first output signal is equal to a logical one and the second output signal is equal to the scan-in signal. When the scan-enable signal is equal to a logical zero, then the first output signal is equal to the first data signal and the second output signal is equal to the second data signal.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US6492841B2
source esp@cenet
subjects BASIC ELECTRONIC CIRCUITRY
ELECTRICITY
PULSE TECHNIQUE
title Integrated NAND and flip-flop circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=HILL%20ANTHONY%20M&rft.date=2002-12-10&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS6492841B2%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true