Method and apparatus for monitoring the process state of a semiconductor device fabrication process

A method and apparatus for monitoring process state using plasma attributes are provided. Electromagnetic emissions generated by a plasma are collected, and a detection signal having at least one frequency component is generated based on the intensity of the collected electromagnetic emissions; or,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: DAVIDOW JED, SARFATY MOSHE, LYMBEROPOULOS DIMITRIS
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator DAVIDOW JED
SARFATY MOSHE
LYMBEROPOULOS DIMITRIS
description A method and apparatus for monitoring process state using plasma attributes are provided. Electromagnetic emissions generated by a plasma are collected, and a detection signal having at least one frequency component is generated based on the intensity of the collected electromagnetic emissions; or, the RF power delivered to a wafer pedestal is monitored and serves as the detection signal. The magnitude of at least one frequency component of the detection signal then is monitored over time. By monitoring the magnitude of at least one frequency component of the detection signal over time, a characteristic fingerprint of the plasma process is obtained. Features within the characteristic fingerprint provide process state information, process event information and process chamber information. In general, any chemical reaction having an attribute that varies with reaction rate may be similarly monitored.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US6455437B1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US6455437B1</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US6455437B13</originalsourceid><addsrcrecordid>eNqNizEOwjAMALswIOAP_gADags7CMTCBMyVcRxqicZR7PJ-OsDOcLrlbl7Rhb3XAJgmcsaCPhpELTBoEtci6QneM-SixGZgjs6gERCMByFNYaSpg8BvIYaIjyKELpp-z7KaRXwZr75eVHA63g7nNWft2DISJ_buft02bdvUu_2m_iP5AFPXPrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method and apparatus for monitoring the process state of a semiconductor device fabrication process</title><source>esp@cenet</source><creator>DAVIDOW JED ; SARFATY MOSHE ; LYMBEROPOULOS DIMITRIS</creator><creatorcontrib>DAVIDOW JED ; SARFATY MOSHE ; LYMBEROPOULOS DIMITRIS</creatorcontrib><description>A method and apparatus for monitoring process state using plasma attributes are provided. Electromagnetic emissions generated by a plasma are collected, and a detection signal having at least one frequency component is generated based on the intensity of the collected electromagnetic emissions; or, the RF power delivered to a wafer pedestal is monitored and serves as the detection signal. The magnitude of at least one frequency component of the detection signal then is monitored over time. By monitoring the magnitude of at least one frequency component of the detection signal over time, a characteristic fingerprint of the plasma process is obtained. Features within the characteristic fingerprint provide process state information, process event information and process chamber information. In general, any chemical reaction having an attribute that varies with reaction rate may be similarly monitored.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; PLASMA TECHNIQUE ; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS ; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2002</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020924&amp;DB=EPODOC&amp;CC=US&amp;NR=6455437B1$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20020924&amp;DB=EPODOC&amp;CC=US&amp;NR=6455437B1$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>DAVIDOW JED</creatorcontrib><creatorcontrib>SARFATY MOSHE</creatorcontrib><creatorcontrib>LYMBEROPOULOS DIMITRIS</creatorcontrib><title>Method and apparatus for monitoring the process state of a semiconductor device fabrication process</title><description>A method and apparatus for monitoring process state using plasma attributes are provided. Electromagnetic emissions generated by a plasma are collected, and a detection signal having at least one frequency component is generated based on the intensity of the collected electromagnetic emissions; or, the RF power delivered to a wafer pedestal is monitored and serves as the detection signal. The magnitude of at least one frequency component of the detection signal then is monitored over time. By monitoring the magnitude of at least one frequency component of the detection signal over time, a characteristic fingerprint of the plasma process is obtained. Features within the characteristic fingerprint provide process state information, process event information and process chamber information. In general, any chemical reaction having an attribute that varies with reaction rate may be similarly monitored.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>PLASMA TECHNIQUE</subject><subject>PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS</subject><subject>PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2002</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqNizEOwjAMALswIOAP_gADags7CMTCBMyVcRxqicZR7PJ-OsDOcLrlbl7Rhb3XAJgmcsaCPhpELTBoEtci6QneM-SixGZgjs6gERCMByFNYaSpg8BvIYaIjyKELpp-z7KaRXwZr75eVHA63g7nNWft2DISJ_buft02bdvUu_2m_iP5AFPXPrc</recordid><startdate>20020924</startdate><enddate>20020924</enddate><creator>DAVIDOW JED</creator><creator>SARFATY MOSHE</creator><creator>LYMBEROPOULOS DIMITRIS</creator><scope>EVB</scope></search><sort><creationdate>20020924</creationdate><title>Method and apparatus for monitoring the process state of a semiconductor device fabrication process</title><author>DAVIDOW JED ; SARFATY MOSHE ; LYMBEROPOULOS DIMITRIS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US6455437B13</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2002</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>PLASMA TECHNIQUE</topic><topic>PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS</topic><topic>PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>DAVIDOW JED</creatorcontrib><creatorcontrib>SARFATY MOSHE</creatorcontrib><creatorcontrib>LYMBEROPOULOS DIMITRIS</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>DAVIDOW JED</au><au>SARFATY MOSHE</au><au>LYMBEROPOULOS DIMITRIS</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method and apparatus for monitoring the process state of a semiconductor device fabrication process</title><date>2002-09-24</date><risdate>2002</risdate><abstract>A method and apparatus for monitoring process state using plasma attributes are provided. Electromagnetic emissions generated by a plasma are collected, and a detection signal having at least one frequency component is generated based on the intensity of the collected electromagnetic emissions; or, the RF power delivered to a wafer pedestal is monitored and serves as the detection signal. The magnitude of at least one frequency component of the detection signal then is monitored over time. By monitoring the magnitude of at least one frequency component of the detection signal over time, a characteristic fingerprint of the plasma process is obtained. Features within the characteristic fingerprint provide process state information, process event information and process chamber information. In general, any chemical reaction having an attribute that varies with reaction rate may be similarly monitored.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US6455437B1
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
PLASMA TECHNIQUE
PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OFNEUTRONS
PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMICBEAMS
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title Method and apparatus for monitoring the process state of a semiconductor device fabrication process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=DAVIDOW%20JED&rft.date=2002-09-24&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS6455437B1%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true