Method for formation of multilayer film
A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substr...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Patent |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | KASHIRO TAKESHI |
description | A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example. |
format | Patent |
fullrecord | <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US6037017A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US6037017A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US6037017A3</originalsourceid><addsrcrecordid>eNrjZFD3TS3JyE9RSMsvAuHcxJLM_DyF_DSF3NKcksycxMpUoHhmTi4PA2taYk5xKi-U5maQd3MNcfbQTS3Ij08tLkhMTs1LLYkPDTYzMDY3MDR3NCasAgAJoCdE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for formation of multilayer film</title><source>esp@cenet</source><creator>KASHIRO; TAKESHI</creator><creatorcontrib>KASHIRO; TAKESHI</creatorcontrib><description>A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2000</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20000314&DB=EPODOC&CC=US&NR=6037017A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20000314&DB=EPODOC&CC=US&NR=6037017A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KASHIRO; TAKESHI</creatorcontrib><title>Method for formation of multilayer film</title><description>A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2000</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3TS3JyE9RSMsvAuHcxJLM_DyF_DSF3NKcksycxMpUoHhmTi4PA2taYk5xKi-U5maQd3MNcfbQTS3Ij08tLkhMTs1LLYkPDTYzMDY3MDR3NCasAgAJoCdE</recordid><startdate>20000314</startdate><enddate>20000314</enddate><creator>KASHIRO; TAKESHI</creator><scope>EVB</scope></search><sort><creationdate>20000314</creationdate><title>Method for formation of multilayer film</title><author>KASHIRO; TAKESHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US6037017A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2000</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>KASHIRO; TAKESHI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KASHIRO; TAKESHI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for formation of multilayer film</title><date>2000-03-14</date><risdate>2000</risdate><abstract>A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_epo_espacenet_US6037017A |
source | esp@cenet |
subjects | BASIC ELECTRIC ELEMENTS CHEMICAL SURFACE TREATMENT CHEMISTRY COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL COATING MATERIAL WITH METALLIC MATERIAL COATING METALLIC MATERIAL DIFFUSION TREATMENT OF METALLIC MATERIAL ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ELECTRICITY INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL METALLURGY SEMICONDUCTOR DEVICES SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION |
title | Method for formation of multilayer film |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KASHIRO;%20TAKESHI&rft.date=2000-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS6037017A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |