Method for formation of multilayer film

A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: KASHIRO, TAKESHI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator KASHIRO
TAKESHI
description A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US6037017A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US6037017A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US6037017A3</originalsourceid><addsrcrecordid>eNrjZFD3TS3JyE9RSMsvAuHcxJLM_DyF_DSF3NKcksycxMpUoHhmTi4PA2taYk5xKi-U5maQd3MNcfbQTS3Ij08tLkhMTs1LLYkPDTYzMDY3MDR3NCasAgAJoCdE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Method for formation of multilayer film</title><source>esp@cenet</source><creator>KASHIRO; TAKESHI</creator><creatorcontrib>KASHIRO; TAKESHI</creatorcontrib><description>A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.</description><edition>7</edition><language>eng</language><subject>BASIC ELECTRIC ELEMENTS ; CHEMICAL SURFACE TREATMENT ; CHEMISTRY ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL ; COATING MATERIAL WITH METALLIC MATERIAL ; COATING METALLIC MATERIAL ; DIFFUSION TREATMENT OF METALLIC MATERIAL ; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR ; ELECTRICITY ; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL ; METALLURGY ; SEMICONDUCTOR DEVICES ; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><creationdate>2000</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20000314&amp;DB=EPODOC&amp;CC=US&amp;NR=6037017A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=20000314&amp;DB=EPODOC&amp;CC=US&amp;NR=6037017A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>KASHIRO; TAKESHI</creatorcontrib><title>Method for formation of multilayer film</title><description>A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.</description><subject>BASIC ELECTRIC ELEMENTS</subject><subject>CHEMICAL SURFACE TREATMENT</subject><subject>CHEMISTRY</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</subject><subject>COATING MATERIAL WITH METALLIC MATERIAL</subject><subject>COATING METALLIC MATERIAL</subject><subject>DIFFUSION TREATMENT OF METALLIC MATERIAL</subject><subject>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</subject><subject>ELECTRICITY</subject><subject>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</subject><subject>METALLURGY</subject><subject>SEMICONDUCTOR DEVICES</subject><subject>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>2000</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFD3TS3JyE9RSMsvAuHcxJLM_DyF_DSF3NKcksycxMpUoHhmTi4PA2taYk5xKi-U5maQd3MNcfbQTS3Ij08tLkhMTs1LLYkPDTYzMDY3MDR3NCasAgAJoCdE</recordid><startdate>20000314</startdate><enddate>20000314</enddate><creator>KASHIRO; TAKESHI</creator><scope>EVB</scope></search><sort><creationdate>20000314</creationdate><title>Method for formation of multilayer film</title><author>KASHIRO; TAKESHI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US6037017A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>2000</creationdate><topic>BASIC ELECTRIC ELEMENTS</topic><topic>CHEMICAL SURFACE TREATMENT</topic><topic>CHEMISTRY</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL</topic><topic>COATING MATERIAL WITH METALLIC MATERIAL</topic><topic>COATING METALLIC MATERIAL</topic><topic>DIFFUSION TREATMENT OF METALLIC MATERIAL</topic><topic>ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR</topic><topic>ELECTRICITY</topic><topic>INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL</topic><topic>METALLURGY</topic><topic>SEMICONDUCTOR DEVICES</topic><topic>SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION</topic><toplevel>online_resources</toplevel><creatorcontrib>KASHIRO; TAKESHI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>KASHIRO; TAKESHI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Method for formation of multilayer film</title><date>2000-03-14</date><risdate>2000</risdate><abstract>A method for forming a multilayer film by introducing a material gas into a reduced-pressure reaction chamber provided with a pair of parallel planer electrodes and supplying a high-frequency electric power to the electrodes thereby generating a plasma state therein and depositing a film on a substrate disposed on one of the electrodes, comprising the steps of (a) introducing a first material gas into the reaction chamber and supplying the high-frequency electric power to the electrodes thereby generating the plasma state and depositing a first film on the substrate, (b) introducing stepwise a preparatory gas and adjusting stepwise a distance between the electrodes, a pressure inside the chamber and a RF power supplied to the electrodes while continuously retaining the plasma state subsequently to step (a), and (c) introducing a second material gas into the reaction chamber while continuously retaining the plasma state thereby and depositing a second film on the first film. According to the method the surface between the films is desirably formed, and this cause a promotion of characteristics when applied to produce a multilayer films constitutes semiconductor device, a TFT and a solar cell for example.</abstract><edition>7</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US6037017A
source esp@cenet
subjects BASIC ELECTRIC ELEMENTS
CHEMICAL SURFACE TREATMENT
CHEMISTRY
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATIONOR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY IONIMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
COATING MATERIAL WITH METALLIC MATERIAL
COATING METALLIC MATERIAL
DIFFUSION TREATMENT OF METALLIC MATERIAL
ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
ELECTRICITY
INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION INGENERAL
METALLURGY
SEMICONDUCTOR DEVICES
SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THESURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION
title Method for formation of multilayer film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A29%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=KASHIRO;%20TAKESHI&rft.date=2000-03-14&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS6037017A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true