Matching new customer records to existing customer records in a large business database using hash key

In this invention there is a method and system for matching new customer records to existing customer records in a database. The new customer records are validated for quality and normalized into a standard form. A hash key is selected to generate a candidate set of records from the existing records...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: PIERCE, BARBARA ANN, PHILLIPS, MARY CLARKESON, LANDER, HENRY, HAIMOWITZ, IRA JOSEPH, MURREN, BRIAN TERENCE
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator PIERCE
BARBARA ANN
PHILLIPS
MARY CLARKESON
LANDER
HENRY
HAIMOWITZ
IRA JOSEPH
MURREN
BRIAN TERENCE
description In this invention there is a method and system for matching new customer records to existing customer records in a database. The new customer records are validated for quality and normalized into a standard form. A hash key is selected to generate a candidate set of records from the existing records in the database that likely matches the new customer records. The new customer records are then matched to each of the records in the candidate set. Once the matching has been performed, a decision is made on whether to create a new customer record, update an existing record, or save the new record in a pending file for resolution at a later time. In another embodiment, there is a methodology for learning matching rules for matching records in a database. The matching rules are then used for matching a new customer record to existing records in a database.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US5819291A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US5819291A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US5819291A3</originalsourceid><addsrcrecordid>eNqFirEKwkAQBdNYiPoN7g9YRBFMGUSxsVLrsLm83B3Gu3C7Qf17CdhZWA3MzDRrz6zG-WAp4ElmEI0PJEowMTVCGgkvLzoOP9EHYuo4WVA9iA8QoYaVaxbQKCw5Fkd3vOfZpOVOsPhyli2Ph-v-tEIfK0jPBgFa3S7bXV6si7zc_D8-nfw_Hw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Matching new customer records to existing customer records in a large business database using hash key</title><source>esp@cenet</source><creator>PIERCE; BARBARA ANN ; PHILLIPS; MARY CLARKESON ; LANDER; HENRY ; HAIMOWITZ; IRA JOSEPH ; MURREN; BRIAN TERENCE</creator><creatorcontrib>PIERCE; BARBARA ANN ; PHILLIPS; MARY CLARKESON ; LANDER; HENRY ; HAIMOWITZ; IRA JOSEPH ; MURREN; BRIAN TERENCE</creatorcontrib><description>In this invention there is a method and system for matching new customer records to existing customer records in a database. The new customer records are validated for quality and normalized into a standard form. A hash key is selected to generate a candidate set of records from the existing records in the database that likely matches the new customer records. The new customer records are then matched to each of the records in the candidate set. Once the matching has been performed, a decision is made on whether to create a new customer record, update an existing record, or save the new record in a pending file for resolution at a later time. In another embodiment, there is a methodology for learning matching rules for matching records in a database. The matching rules are then used for matching a new customer record to existing records in a database.</description><edition>6</edition><language>eng</language><subject>CALCULATING ; COMPUTING ; COUNTING ; ELECTRIC DIGITAL DATA PROCESSING ; PHYSICS</subject><creationdate>1998</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19981006&amp;DB=EPODOC&amp;CC=US&amp;NR=5819291A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,776,881,25542,76290</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19981006&amp;DB=EPODOC&amp;CC=US&amp;NR=5819291A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>PIERCE; BARBARA ANN</creatorcontrib><creatorcontrib>PHILLIPS; MARY CLARKESON</creatorcontrib><creatorcontrib>LANDER; HENRY</creatorcontrib><creatorcontrib>HAIMOWITZ; IRA JOSEPH</creatorcontrib><creatorcontrib>MURREN; BRIAN TERENCE</creatorcontrib><title>Matching new customer records to existing customer records in a large business database using hash key</title><description>In this invention there is a method and system for matching new customer records to existing customer records in a database. The new customer records are validated for quality and normalized into a standard form. A hash key is selected to generate a candidate set of records from the existing records in the database that likely matches the new customer records. The new customer records are then matched to each of the records in the candidate set. Once the matching has been performed, a decision is made on whether to create a new customer record, update an existing record, or save the new record in a pending file for resolution at a later time. In another embodiment, there is a methodology for learning matching rules for matching records in a database. The matching rules are then used for matching a new customer record to existing records in a database.</description><subject>CALCULATING</subject><subject>COMPUTING</subject><subject>COUNTING</subject><subject>ELECTRIC DIGITAL DATA PROCESSING</subject><subject>PHYSICS</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1998</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNqFirEKwkAQBdNYiPoN7g9YRBFMGUSxsVLrsLm83B3Gu3C7Qf17CdhZWA3MzDRrz6zG-WAp4ElmEI0PJEowMTVCGgkvLzoOP9EHYuo4WVA9iA8QoYaVaxbQKCw5Fkd3vOfZpOVOsPhyli2Ph-v-tEIfK0jPBgFa3S7bXV6si7zc_D8-nfw_Hw</recordid><startdate>19981006</startdate><enddate>19981006</enddate><creator>PIERCE; BARBARA ANN</creator><creator>PHILLIPS; MARY CLARKESON</creator><creator>LANDER; HENRY</creator><creator>HAIMOWITZ; IRA JOSEPH</creator><creator>MURREN; BRIAN TERENCE</creator><scope>EVB</scope></search><sort><creationdate>19981006</creationdate><title>Matching new customer records to existing customer records in a large business database using hash key</title><author>PIERCE; BARBARA ANN ; PHILLIPS; MARY CLARKESON ; LANDER; HENRY ; HAIMOWITZ; IRA JOSEPH ; MURREN; BRIAN TERENCE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US5819291A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1998</creationdate><topic>CALCULATING</topic><topic>COMPUTING</topic><topic>COUNTING</topic><topic>ELECTRIC DIGITAL DATA PROCESSING</topic><topic>PHYSICS</topic><toplevel>online_resources</toplevel><creatorcontrib>PIERCE; BARBARA ANN</creatorcontrib><creatorcontrib>PHILLIPS; MARY CLARKESON</creatorcontrib><creatorcontrib>LANDER; HENRY</creatorcontrib><creatorcontrib>HAIMOWITZ; IRA JOSEPH</creatorcontrib><creatorcontrib>MURREN; BRIAN TERENCE</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>PIERCE; BARBARA ANN</au><au>PHILLIPS; MARY CLARKESON</au><au>LANDER; HENRY</au><au>HAIMOWITZ; IRA JOSEPH</au><au>MURREN; BRIAN TERENCE</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Matching new customer records to existing customer records in a large business database using hash key</title><date>1998-10-06</date><risdate>1998</risdate><abstract>In this invention there is a method and system for matching new customer records to existing customer records in a database. The new customer records are validated for quality and normalized into a standard form. A hash key is selected to generate a candidate set of records from the existing records in the database that likely matches the new customer records. The new customer records are then matched to each of the records in the candidate set. Once the matching has been performed, a decision is made on whether to create a new customer record, update an existing record, or save the new record in a pending file for resolution at a later time. In another embodiment, there is a methodology for learning matching rules for matching records in a database. The matching rules are then used for matching a new customer record to existing records in a database.</abstract><edition>6</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US5819291A
source esp@cenet
subjects CALCULATING
COMPUTING
COUNTING
ELECTRIC DIGITAL DATA PROCESSING
PHYSICS
title Matching new customer records to existing customer records in a large business database using hash key
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=PIERCE;%20BARBARA%20ANN&rft.date=1998-10-06&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS5819291A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true