Device for optically measuring distance

In a device 100 for measuring distance, a signal generating circuit 20 generates a driving signal. The driving signal is serially modulated in phase into at least three states. The signal generating circuit 20 further generates reference signals having frequencies the same as the driving signal. A l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: NAKAMURA, SHIGEYUKI, NAKASE, SHIGEKI, SHIMANO, HIROMI
Format: Patent
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator NAKAMURA
SHIGEYUKI
NAKASE
SHIGEKI
SHIMANO
HIROMI
description In a device 100 for measuring distance, a signal generating circuit 20 generates a driving signal. The driving signal is serially modulated in phase into at least three states. The signal generating circuit 20 further generates reference signals having frequencies the same as the driving signal. A light source 30 is driven by the driving signal to emit detection light which is time-divisionally modulated in phase in accordance with the driving signal. An optical detector 40 receives the detection light which has been emitted from the light source 30 and scattered and reflected by the target. The optical detector 40 generates a detection signal which is time-divisionally modulated in phase in accordance with the received detection light. Homodyne processing circuits 50 and 60 superimpose the detection signal and the reference signals to generate homodyne signals (interference signals). Temporal mean values of intensities of the homodyne signals are obtained. A gain controlling circuit 80 feed-back controls the gains in the circuits 50 and 60. A phase detecting circuit 70 measures the temporal mean values of intensities of the homodyne signals, and calculates a difference between a phase of the detection light emitted from the light source and a phase of the detection light received at the optical detector.
format Patent
fullrecord <record><control><sourceid>epo_EVB</sourceid><recordid>TN_cdi_epo_espacenet_US5694204A</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>US5694204A</sourcerecordid><originalsourceid>FETCH-epo_espacenet_US5694204A3</originalsourceid><addsrcrecordid>eNrjZFB3SS3LTE5VSMsvUsgvKMlMTszJqVTITU0sLi3KzEtXSMksLknMS07lYWBNS8wpTuWF0twM8m6uIc4euqkF-fGpxQWJyal5qSXxocGmZpYmRgYmjsaEVQAAFpQncg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>patent</recordtype></control><display><type>patent</type><title>Device for optically measuring distance</title><source>esp@cenet</source><creator>NAKAMURA; SHIGEYUKI ; NAKASE; SHIGEKI ; SHIMANO; HIROMI</creator><creatorcontrib>NAKAMURA; SHIGEYUKI ; NAKASE; SHIGEKI ; SHIMANO; HIROMI</creatorcontrib><description>In a device 100 for measuring distance, a signal generating circuit 20 generates a driving signal. The driving signal is serially modulated in phase into at least three states. The signal generating circuit 20 further generates reference signals having frequencies the same as the driving signal. A light source 30 is driven by the driving signal to emit detection light which is time-divisionally modulated in phase in accordance with the driving signal. An optical detector 40 receives the detection light which has been emitted from the light source 30 and scattered and reflected by the target. The optical detector 40 generates a detection signal which is time-divisionally modulated in phase in accordance with the received detection light. Homodyne processing circuits 50 and 60 superimpose the detection signal and the reference signals to generate homodyne signals (interference signals). Temporal mean values of intensities of the homodyne signals are obtained. A gain controlling circuit 80 feed-back controls the gains in the circuits 50 and 60. A phase detecting circuit 70 measures the temporal mean values of intensities of the homodyne signals, and calculates a difference between a phase of the detection light emitted from the light source and a phase of the detection light received at the optical detector.</description><edition>6</edition><language>eng</language><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES ; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES ; GYROSCOPIC INSTRUMENTS ; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES ; MEASURING ; MEASURING ANGLES ; MEASURING AREAS ; MEASURING DISTANCES, LEVELS OR BEARINGS ; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS ; MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS ; NAVIGATION ; PHOTOGRAMMETRY OR VIDEOGRAMMETRY ; PHYSICS ; RADIO DIRECTION-FINDING ; RADIO NAVIGATION ; SURVEYING ; TESTING</subject><creationdate>1997</creationdate><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19971202&amp;DB=EPODOC&amp;CC=US&amp;NR=5694204A$$EHTML$$P50$$Gepo$$Hfree_for_read</linktohtml><link.rule.ids>230,308,780,885,25564,76547</link.rule.ids><linktorsrc>$$Uhttps://worldwide.espacenet.com/publicationDetails/biblio?FT=D&amp;date=19971202&amp;DB=EPODOC&amp;CC=US&amp;NR=5694204A$$EView_record_in_European_Patent_Office$$FView_record_in_$$GEuropean_Patent_Office$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>NAKAMURA; SHIGEYUKI</creatorcontrib><creatorcontrib>NAKASE; SHIGEKI</creatorcontrib><creatorcontrib>SHIMANO; HIROMI</creatorcontrib><title>Device for optically measuring distance</title><description>In a device 100 for measuring distance, a signal generating circuit 20 generates a driving signal. The driving signal is serially modulated in phase into at least three states. The signal generating circuit 20 further generates reference signals having frequencies the same as the driving signal. A light source 30 is driven by the driving signal to emit detection light which is time-divisionally modulated in phase in accordance with the driving signal. An optical detector 40 receives the detection light which has been emitted from the light source 30 and scattered and reflected by the target. The optical detector 40 generates a detection signal which is time-divisionally modulated in phase in accordance with the received detection light. Homodyne processing circuits 50 and 60 superimpose the detection signal and the reference signals to generate homodyne signals (interference signals). Temporal mean values of intensities of the homodyne signals are obtained. A gain controlling circuit 80 feed-back controls the gains in the circuits 50 and 60. A phase detecting circuit 70 measures the temporal mean values of intensities of the homodyne signals, and calculates a difference between a phase of the detection light emitted from the light source and a phase of the detection light received at the optical detector.</description><subject>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</subject><subject>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</subject><subject>GYROSCOPIC INSTRUMENTS</subject><subject>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</subject><subject>MEASURING</subject><subject>MEASURING ANGLES</subject><subject>MEASURING AREAS</subject><subject>MEASURING DISTANCES, LEVELS OR BEARINGS</subject><subject>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</subject><subject>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</subject><subject>NAVIGATION</subject><subject>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</subject><subject>PHYSICS</subject><subject>RADIO DIRECTION-FINDING</subject><subject>RADIO NAVIGATION</subject><subject>SURVEYING</subject><subject>TESTING</subject><fulltext>true</fulltext><rsrctype>patent</rsrctype><creationdate>1997</creationdate><recordtype>patent</recordtype><sourceid>EVB</sourceid><recordid>eNrjZFB3SS3LTE5VSMsvUsgvKMlMTszJqVTITU0sLi3KzEtXSMksLknMS07lYWBNS8wpTuWF0twM8m6uIc4euqkF-fGpxQWJyal5qSXxocGmZpYmRgYmjsaEVQAAFpQncg</recordid><startdate>19971202</startdate><enddate>19971202</enddate><creator>NAKAMURA; SHIGEYUKI</creator><creator>NAKASE; SHIGEKI</creator><creator>SHIMANO; HIROMI</creator><scope>EVB</scope></search><sort><creationdate>19971202</creationdate><title>Device for optically measuring distance</title><author>NAKAMURA; SHIGEYUKI ; NAKASE; SHIGEKI ; SHIMANO; HIROMI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-epo_espacenet_US5694204A3</frbrgroupid><rsrctype>patents</rsrctype><prefilter>patents</prefilter><language>eng</language><creationdate>1997</creationdate><topic>ANALOGOUS ARRANGEMENTS USING OTHER WAVES</topic><topic>DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES</topic><topic>GYROSCOPIC INSTRUMENTS</topic><topic>LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES</topic><topic>MEASURING</topic><topic>MEASURING ANGLES</topic><topic>MEASURING AREAS</topic><topic>MEASURING DISTANCES, LEVELS OR BEARINGS</topic><topic>MEASURING IRREGULARITIES OF SURFACES OR CONTOURS</topic><topic>MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS</topic><topic>NAVIGATION</topic><topic>PHOTOGRAMMETRY OR VIDEOGRAMMETRY</topic><topic>PHYSICS</topic><topic>RADIO DIRECTION-FINDING</topic><topic>RADIO NAVIGATION</topic><topic>SURVEYING</topic><topic>TESTING</topic><toplevel>online_resources</toplevel><creatorcontrib>NAKAMURA; SHIGEYUKI</creatorcontrib><creatorcontrib>NAKASE; SHIGEKI</creatorcontrib><creatorcontrib>SHIMANO; HIROMI</creatorcontrib><collection>esp@cenet</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>NAKAMURA; SHIGEYUKI</au><au>NAKASE; SHIGEKI</au><au>SHIMANO; HIROMI</au><format>patent</format><genre>patent</genre><ristype>GEN</ristype><title>Device for optically measuring distance</title><date>1997-12-02</date><risdate>1997</risdate><abstract>In a device 100 for measuring distance, a signal generating circuit 20 generates a driving signal. The driving signal is serially modulated in phase into at least three states. The signal generating circuit 20 further generates reference signals having frequencies the same as the driving signal. A light source 30 is driven by the driving signal to emit detection light which is time-divisionally modulated in phase in accordance with the driving signal. An optical detector 40 receives the detection light which has been emitted from the light source 30 and scattered and reflected by the target. The optical detector 40 generates a detection signal which is time-divisionally modulated in phase in accordance with the received detection light. Homodyne processing circuits 50 and 60 superimpose the detection signal and the reference signals to generate homodyne signals (interference signals). Temporal mean values of intensities of the homodyne signals are obtained. A gain controlling circuit 80 feed-back controls the gains in the circuits 50 and 60. A phase detecting circuit 70 measures the temporal mean values of intensities of the homodyne signals, and calculates a difference between a phase of the detection light emitted from the light source and a phase of the detection light received at the optical detector.</abstract><edition>6</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_epo_espacenet_US5694204A
source esp@cenet
subjects ANALOGOUS ARRANGEMENTS USING OTHER WAVES
DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES
GYROSCOPIC INSTRUMENTS
LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION ORRERADIATION OF RADIO WAVES
MEASURING
MEASURING ANGLES
MEASURING AREAS
MEASURING DISTANCES, LEVELS OR BEARINGS
MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
MEASURING LENGTH, THICKNESS OR SIMILAR LINEARDIMENSIONS
NAVIGATION
PHOTOGRAMMETRY OR VIDEOGRAMMETRY
PHYSICS
RADIO DIRECTION-FINDING
RADIO NAVIGATION
SURVEYING
TESTING
title Device for optically measuring distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-epo_EVB&rft_val_fmt=info:ofi/fmt:kev:mtx:patent&rft.genre=patent&rft.au=NAKAMURA;%20SHIGEYUKI&rft.date=1997-12-02&rft_id=info:doi/&rft_dat=%3Cepo_EVB%3EUS5694204A%3C/epo_EVB%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true